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Abstract. The topological method for the reconstruction of dynamics from time series [K. Mischaikow et
al., Phys. Rev. Lett., 82 (1999), pp. 1144–1147] is reshaped to improve its range of applicability,
particularly in the presence of sparse data and strong expansion. The improvement is based on a
multivalued map representation of the data. However, unlike the previous approach, it is not required
that the representation has a continuous selector. Instead of a selector, a recently developed new
version of Conley index theory for multivalued maps [B. Batko, SIAM J. Appl. Dyn. Syst., 16
(2017), pp. 1587–1617; B. Batko and M. Mrozek, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1143–
1162] is used in computations. The existence of a continuous, single valued generator of the relevant
dynamics is guaranteed in the vicinity of the graph of the multivalued map constructed from data.
Some numerical examples based on time series derived from the iteration of Hénon-type maps are
presented.
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1. Introduction. Conceptual models for most physical systems are based on a continuum;
values of the states of a system are assumed to be real numbers. At the same time science is
increasingly becoming data driven and thus based on finite information. This suggests the need
for tools that seamlessly and systematically provide information about continuous structures
from finite data and accounts for the rapid rise in use of methods from topological data analysis
(TDA). However, not surprisingly, there are significant challenges associated with the sampling
or generation of data versus the necessary coverage from which to draw the appropriate
conclusions. In this paper we focus on this challenge in the context of nonlinear dynamics.

The fundamental work of Niyogi, Smale, and Weinberger [29] provides probabilistic guar-
antees that the correct homology groups have been computed, but is based on uniform sam-
pling of the manifold. For a nonlinear dynamical system one expects that the sampling is
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influenced by an underlying invariant measure that is rarely uniform with respect to the vol-
ume of the underlying phase space. Furthermore, in practice one seldom knows the underlying
subset of phase space on which the dynamics of interest occurs, e.g., the invariant set. As a
consequence one must expect that in applications we will need to collect considerably more
data than a theoretical minimum would necessitate.

The predominant tool used by the TDA community to overcome the problem of lack of
knowledge of the topological space of interest is persistent homology that provides homological
information at all scales. There are two challenges associated with this approach. The first
is that persistent homology computations on large data sets can be prohibitively expensive
(there is extensive work being done to address this problem [9, 30, 17]) and, second, that the
development of a persistence theory of maps is in its early stages [10, 11, 4]. An alternative
technique is to bin the data. This is the approach we adopt in this paper. In particular, we
assume that the data points are measured via coordinates and thus the binning in phase space
naturally takes the form of cubical sets. The advantage is that we can a priori choose the bins
so that the homological computations are feasible given time and memory constraints, and
almost tautologically the binning process is a data reduction technique.

Identification of the space is only part of the challenge of understanding dynamics; we
also need to capture the behavior of the nonlinear map that generates the dynamics. Though
an oversimplification, interesting dynamics is often driven by nonlinearities that exhibit sig-
nificant expansion. As is made explicit in [12] the amount of data needed to expect a correct
direct computation of the induced maps on homology is proportional to the magnitude of
the Lipschitz constant of the map. This will not be a surprise to anyone who has attempted
to construct explicit simplicial maps for nonlinear functions. The significance of the work
reported in this paper is that we can obtain reliable information about the dynamics without
directly identifying the map.

To explain the philosophy before becoming submerged in the technical details (precise
definitions and notation are provided in the following sections), consider a dynamical system
on the unit interval and assume that we have collected the data { (x, y) ∈ [0, 1]× [0, 1] } as
indicated in Figure 1.1(a). We interpret these data as providing information about the graph
of a continuous map f : [0, 1] → [0, 1] and the question we ask is, can we extract information
about the dynamics generated by f? The answer is yes. In fact, under minimal hypotheses we
can conclude that there are attractors that contain a fixed point within the intervals [0, 1

4 ] and
[3
4 , 1], and there exists an unstable invariant set, also containing a fixed point, in the interval

[3
8 ,

5
8 ]. These results are obtained by building an upper semicontinuous acyclic multivalued

map F : [0, 1] ( [0, 1] (see section 2) from the available data, applying to it a recently devel-
oped new version of Conley index theory for multivalued maps [2, 1] in order to identify isolat-
ing neighborhoods and index pairs, and then computing the associated Conley indices (see Def-
inition 2.2). The last point requires that we be able to compute an induced map on homology.

An outline for the strategy used to perform these identifications is as follows. As indicated
above we bin the data. Using intervals of length 1/4 to define the bins we obtain the blue
shaded regions shown in Figure 1.1(b). The blue regions are meant to provide a representation
F of the graph of the unknown function f . Of course, as presented this is impossible; the
domain of F is connected but the blue regions are not. One means of addressing this issue isD
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CONLEY INDEX APPROACH TO SAMPLED DYNAMICS 667

(a) The data marked by blue
dots and the grid indicated with
orange dashed lines.

(b) The bins of data indicated
with four squares shaded with
blue.

(c) The expansion of bins indi-
cated with six squares shaded
with red and the graph of a con-
tinuous selector in black.

(d) The graph of an upper semi-
continuous acyclic map F :
X ( X in blue. Isolating neigh-
borhood N marked by orange
line segment.

(e) The graph of map F : X (
X in blue, and its vicinity for
continuous maps sharing with F
isolating neighborhood N and
the Conley index, in green.

Figure 1.1. Construction of an upper semicontinuous acyclic multivalued map F covering points represent-
ing the data.

to expand the representation so that the graph of a continuous function can be included in the
representation, i.e., the representation admits a continuous selector. Techniques of this type
were successfully employed in [23]. However, they may easily fail. Applying the method of [23]
to the representation in Figure 1.1(b) leads to the representation in Figure 1.1(c). Actually,
this is a minimal expansion which admits continuous selectors satisfying f(1

2) = 1
2 . However,

the resulting approximation of the dynamics is too crude: the combinatorial procedure for
finding isolation neighborhoods presented in [36, 37] fails to produce an isolating neighborhood
for the fixed point x = 1

2 . On one hand, one can easily check that any other procedure
must fail in this case, because the identity map is among selectors. On the other hand,
using an even larger expansion that produces an outer approximation [20] and using methods
detailed in [7, 8], the desired isolating neighborhood and index pair can be recovered. However,
our experience is that applying this latter approach to complex time series data even for 2-
dimensional examples, often results in failure.
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Lest the reader think that this is a contrived example, consider the function f : [0, 1] →
[0, 1] given by f(x) = −nx3 + (1 +n)x and observe that for n ≥ 1 the points in Figure 1.1 are
consistent with data lying near the graph of f . The dynamics generated by f consists of stable
fixed points at 0 and 1, an unstable fixed point at 1/2, and connecting orbits from the unstable
fixed point to the stable fixed points. Furthermore, as n increases, the minimal Lipschitz
constant of f given by f ′(1/2) = 4+n

4 increases which results in the dynamics becoming more
pronounced. However, from the perspective of experimental or numerically derived data, we
expect the data points to cluster along the lines y = 0 and y = 1, and thus the observed
discontinuity becomes more pronounced especially if one refines the binning. We take this
to be yet another suggestion that the direct approach of constructing a representation that
admits a continuous selector is not the ideal technique.

As indicated above, we draw conclusions about the continuous dynamics from induced
maps on homology via the Conley index. This suggests that to obtain motivation for an
alternative approach we consider the example from a purely homological perspective. Consider
a function f : [0, 1] → [0, 1] and its graph Gf := { (x, y) ∈ [0, 1]2 | y = f(x) }. Let π1 : Gf →
[0, 1] and π2 : Gf → [0, 1] denote the projections from the graph to the domain and range of
f , respectively. Then π1 is a homeomorphism, π1∗ is invertible, and, on the level of homology,
f∗ = π2∗◦π−1

1∗ . Observe that if we replace Gf by the blue shaded regions shown in Figure 1.1(b)
then π1∗ is not invertible, but we still can deduce the correct map induced by F on homology.
This is because the preimage π−1

1∗ takes on two values, but these values are mapped to the same
value under π2∗. For a more complete discussion on this perspective see [16]. What should
be clear is that to apply this in general we require a condition that forces π2∗ to collapse
appropriate generators in the homology of the representation H∗(F ).

With this in mind consider the blue region shown in Figure 1.1(d). In this case the fibers of
π1 are acyclic, thus π1∗ is invertible, and the question of how π2∗ acts on generators is resolved.
Because we are interested in extracting dynamics, rather than considering the blue region to
be a fiber bundle over the phase space, we view it as the graph of an upper semicontinuous
acyclic multivalued map F : [0, 1] ( [0, 1] and we use F to extract isolating neighborhoods,
index pairs, and, ultimately, the Conley index.

We note that in this simple 1-dimensional example, the choice of the blue line in Fig-
ure 1.1(d) is obvious. In higher dimensions there are a variety of means of attempting to
resolve the issue of controlling how π2∗ acts on generators from the preimage of π1∗ and the
identification of optimal methods remains an open question. In this paper we seek minimal
rectangular regions.

To be more specific we assume that our data consist of a finite set of points A ⊂ Rd and
our understanding of the dynamics is to be derived from the map g : A→ Rd. We also assume
that we have chosen a scale δ > 0 for the binning and that the bins take the form

[n1δ, (n1 + 1)δ]× [n2δ, (n2 + 1)δ]× · · · × [ndδ, (nd + 1)δ],

where ni ∈ Z. More generally, we work with δ-cuboids, sets of the form

(1) [n1δ,m1δ]× [n2δ,m2δ]× · · · × [ndδ,mdδ],

where (n1, n2, . . . , nd), (m1,m2, . . . ,md) ∈ Zd. An elementary cube is a cuboid where mi−ni ∈
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{0, 1} for i = 1, 2, . . . , d. We denote the set of all δ-cuboids in Rd by Cdδ and the set of all
elementary δ-cubes in Rd by Kdδ .

For a bounded subset X ⊂ Rd we introduce the following notation:

Kδ(X) :=
⋃
{Q ∈ Kdδ | X ∩Q 6= ∅ }

and
xXqδ :=

⋃
{Q ∈ Kdδ | conv (X) ∩Q 6= ∅ },

where conv (X) denotes the convex hull of X.
Returning to the map g : A → Rd its sunflower enclosure is the multivalued map

F sg,δ : Kδ(A) ( Rd defined by

F sg,δ(x) := xg(Kδ(x) ∩A)qδ ⊂ Rd.

We note that the map has nonempty values, because for x ∈ Kδ(A) the set Kδ(x) ∩ A 6= ∅
even if x 6∈ A. We leave it to the reader to check that given { (x, g(x)) ∈ [0, 1]× [0, 1] } as
shown in Figure 1.1(a), the graph of F sg,δ is as shown in Figure 1.1(d).

Sunflower enclosures satisfy a variety of nice properties. Recall (cf. [18]) that F : X ( Rd
is cubical if

(a) X ⊂ Rn is a cubical set, i.e., it can be written as a finite union of elementary cubes;
(b) for any x ∈ X the set F (x) is cubical;
(c) for any elementary cube Q = [n1δ,m1δ]×· · ·× [ndδ,mdδ] in X, F|Q̊ is constant, where

Q̊ := (n1δ,m1δ)× · · · × (ndδ,mdδ) and (niδ,miδ) = {ni} if ni = mi.
The following proposition follows from [14, Proposition 14.5].

Proposition 1.1. A sunflower enclosure is an upper semicontinuous cubical map.

When the values of the sunflower enclosure are contractible, then using algorithms devel-
oped in [36] and the formula from [1, Theorem 4.4] one can identify cubical isolating blocks,
cubical weak index pairs, and an index map associated with F sg,δ (see [31] for more details).
In particular, a Conley index can be computed.

From the perspective of identifying dynamics the aforementioned computation should be
viewed as purely formal, e.g., in and of itself it does not guarantee that there is a continuous
map that generates dynamics that is compatible with the associated Conley indices. The
majority of this paper is dedicated to guaranteeing that the formal computation does in
fact lead to the existence of a large, but explicit, family of nonlinearities that are capable
of producing the observed dynamics. To state our goals more precisely we introduce the
following notation. Let F : X ( X. For simplicity of notation we identify F with its graph
{ (x, y) ∈ X ×X | y ∈ F (x) }. Using the max-norm on the product space X×X, let B(F, ε) ⊂
X ×X denote the open set of points within ε of the graph of F (see Figure 1.1(e)). Following
[15] (cf., e.g., [14]) we say that a continuous single valued map f : X → X is a continuous
ε-approximation (on the graph) of F : X ( X if f ⊂ B(F, ε).

We denote the set of continuous ε-approximations of F by aε(F ).
Our claim is that Conley index information computed for F : X ( X, an acyclic upper

semicontinous cubical map, is valid for the dynamics generated by any continuous function
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f ∈ aε(F ) for all ε ∈ (0, ε0) sufficiently small. As the results described below indicate, our
approach provides explicit lower bounds on ε0.

We have, up to this point in the introduction, been rather circumspect about how the
Conley index provides information about nonlinear dynamics. One of the more powerful
results is that it can be used to construct semiconjugacies to known dynamics. To be more
precise, given two continuous maps f : X → X and σ : Y → Y , f is semiconjugate to σ if
there exists a continuous surjective map ρ : X → Y such that

X X

Y Y

ρ

f

ρ

σ

commutes. Semiconjugacies are of interest if the dynamics of σ is understood, as this implies
that the dynamics of f must be at least as complicated, i.e., one can deduce structure about
the dynamics of f from that of σ.

In the context of the Conley theory, one begins with an index pair P = (P1, P2) (see
section 2 for precise definitions). The homological Conley index is derived from a map
fP∗ : H∗(P1/P2, [P2]) → H∗(P1/P2, [P2]) that itself is derived from the action of f on the
pointed quotient space (P1/P2, [P2]). Let N = cl(P1 \ P2). The meta form of the desired
theorem is that given the homological Conley index, information about the index pair, and
an explicit dynamical system σ : Y → Y , then there exists a semiconjugacy

Inv(N, f) Inv(N, f)

Y Y

ρ

f

ρ

σ

where Inv(N, f) denotes the maximal invariant set in N under f .
The potential of the proposed theory in applications is demonstrated in [3], in particular

in examples based on the time series studied in [23]. In this paper we will prove the following
three results.

Theorem 1.2. Consider the time series x̄ = (xi)
20689
i=100 generated by iterating the Hénon map

H : R2 3 (x, y) 7→ (1− ax2 + by, x) ∈ R2

with the parameter values a = 1.65, b = 0.1, and initial condition (x0, y0) = (0, 0). Set

Ax̄ := { (xi, xi+1) | i = 100, . . . , 20,688 }

and let gx̄ : Ax̄ → R2 be given by gx̄(xi, xi+1) = (xi+1, xi+2).
Choose a binning of R2 based on δ := 0.008127 and let F := F sgx̄,δ : Kδ(Ax̄) ( R2 be the

sunflower enclosure of gx̄, i.e.,

F sgx̄,δ(x) := xgx̄(Kδ(x) ∩Ax̄)qδ ⊂ R2.

Let ε = δ/2.
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Figure 1.2. Domain of sunflower enclosure for gx̄ consisting of 1184 2-dimensional cubes, an isolating
neighborhood (in dark sea green), its weak index pair (in blue violet), and the graph of transitions between
components of an isolating neighborhood.

Then, aε(F ) 6= ∅. Furthermore, there exists a compact set N ⊂ R2 (see Figure 1.2) such
that for any f ∈ aε(F )

(i) N is an isolating neighborhood of f ;
(ii) there exists a semiconjugacy θf : Inv(N, f) → ΣA onto the subshift of finite type on

six symbols with the transition matrix

A =



0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0


such that for every periodic a ∈ ΣA there exists a periodic point of f in θ−1

f (a).
In particular, f has positive topological entropy on Inv(N, f).
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Figure 1.3. Domain of sunflower enclosure for gx̄ consisting of 1029 3-dimensional cubes, an isolating
neighborhood (in dark cyan), its weak index pair (in orange), and the graph of transitions between components
of an isolating neighborhood.

Note that in the above theorem, as well as in the oncoming theorems, we use a Hénon map
with parameter values randomly selected from the set of values for which the system is chaotic.

Theorem 1.3. Consider the time series x̄ = (xi)
14000
i=100 generated by iterating the delayed

Hénon map
H : R3 3 (x, y, z) 7→ (1− ax2 + bz, x, y) ∈ R3

with the parameter values a = 1.65, b = 0.1, and initial point (x0, y0, z0) = (0, 0, 0). Set

Ax̄ := { (xi, xi+1, xi+2) | i = 100, . . . , 13,998 }

and let gx̄ : Ax̄ → R3 be given by gx̄(xi, xi+1, xi+2) = (xi+1, xi+2, xi+3).
Choose a binning of R3 based on δ := 0.035256 and let F := F sgx̄,δ : Kδ(Ax̄) ( R3 be the

sunflower enclosure of gx̄.
Let ε = δ/2.
Then, aε(F ) 6= ∅. Furthermore, there exists a compact set N ⊂ R3 (see Figure 1.3) such

that for any f ∈ aε(F )
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(i) N is an isolating neighborhood of f ; and
(ii) there exists a semiconjugacy θf : Inv(N, f) → ΣA onto the subshift of finite type on

five symbols with the transition matrix

A =


0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 1 0 0


such that for every periodic a ∈ ΣA there exists a periodic point of f in θ−1

f (a).
In particular, f has positive topological entropy on Inv(N, f).

The next theorem shows that our approach can also be successfully applied in the case of
sparse data. Naturally, the dynamics that we capture is simpler than chaotic dynamics, but
we employ significantly less data.

Theorem 1.4. Consider the time series x̄ = (xi)
286
i=0 generated by iterating the Hénon map

H : R2 3 (x, y) 7→ (1− ax2 + by, x) ∈ R2

with the parameter values a = 1.65, b = 0.1, and initial condition

(x0, y0) = (0.891532,−0.346078).

Set
Ax̄ := { (xi, xi+1) | i = 0, . . . , 285 }

and let gx̄ : Ax̄ → R2 be given by gx̄(xi, xi+1) = (xi+1, xi+2).
Choose a binning of R2 based on δ := 0.036 and let F := F sgx̄,δ : Kδ(Ax̄) ( R2 be the

sunflower enclosure of gx̄. Let ε = δ/2.
Then, aε(F ) 6= ∅. Furthermore, there exists a compact set N ⊂ R3 (see Figure 1.4) such

that for any f ∈ aε(F ) the set N is an isolating neighborhood of f and f has a 2-periodic
point in Inv(N, f).

We run experiments relating to a periodic orbit for larger numbers of data points: 300, 500,
and 1000. In each case we obtained the same conclusion as in Theorem 1.4. For attempts with
less than 286 points the construction of the multivalued representation failed: our algorithm
reported the existence of nonacyclic values of the enclosure.

A similar comment applies for Theorems 1.2 and 1.3. We verified that one can derive the
same conclusions using time series consisting of 25000 or 30000 elements. We were unable to
go below 20689 points in Theorem 1.2. One can verify the conclusion of Theorem 1.3 using
time series with less than 14000 elements, however, we did not try to find the minimal length
of the time series.

Since, till now, we use data obtained by sampling the system whose generator is known,
we can compare the obtained results with the dynamics generated by the generator map it-
self. To this end, we use interval methods [28] to obtain a rigorous combinatorial enclosure of
the Hénon map. Then we apply methods presented in [24]. In particular, we can prove the
following theorem.
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Figure 1.4. Domain of sunflower enclosure for gx̄ consisting of 106 2-dimensional cubes, an isolating
neighborhood (in dark sea green), its weak index pair (P1 in yellow, P2 in green), and the graph of transitions
between components of an isolating neighborhood. Lower dimensional cubes are enlarged to 2-dimensional cubes.

Theorem 1.5. Consider the Hénon map

H : R2 3 (x, y) 7→ (1− ax2 + by, x) ∈ R2

with the parameter values a = 1.65, b = 0.1. Let N be given by Theorem 1.4. Then,
{(x, y) ∈ R2 | (y, x) ∈ N} is an isolating neighborhood for H, isolating the 2-periodic or-
bit of H.

We note that in the presented examples the dynamics of the shift maps is expanding.
In particular, in Theorem 1.2 the Lipschitz constant of the shift map gx̄ is estimated to be
3.70067, in Theorem 1.3 it is estimated to be 3.6327, and in Theorem 1.4 it is estimated to
be 3.43745.

Theorems 1.2–1.4 are only meant to illustrate the proposed method. In this paper we focus
on the theoretical results needed for the method. Several questions have to be addressed to
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make the method work in concrete problems. In particular, a question arises of how sensitive
these results are to the choice of δ, the length of the time series, or the choice of initial
condition. The fundamental feature of the Conley index is that it does not change under a
small perturbation of the generator of the dynamical systems. Thus, the question reduces
to the understanding of the stability of the multivalued map representation of the data. It
is natural to expect that by increasing the length of the time series or changing the initial
condition the semiconjugacy should be preserved as long as the same isolating neighborhood
is used. Experiments we run confirm this expectation. More delicate is the question how
the choice of δ affects the results. On one hand, if δ is very small, then the domain of
the multivalued representation becomes a collection of isolated cubes. Therefore, it cannot
properly approximate the phase space which is a continuum. On the other hand, if δ is too
large, the multivalued representation gives a very coarse description of dynamics. Therefore,
one cannot expect that it will give an interesting description of dynamics. Thus, the optimum
is somewhere in the middle. Experiments we run show that small changes to δ preserve the
results and moderate changes lead to a different matrix A but still let us claim the existence of
an invariant set with positive entropy. An interesting problem is to get the understanding of
changes in the results under varying δ in the spirit of persistent homology. All these practical
questions are left for future investigations.

We now provide an outline for the paper. Section 2 provides basic definitions related to
the Conley index. Section 3 presents results about isolating neighborhoods in the context
of upper semicontinuous multivalued maps. Section 4 makes use of the results of section 3
to provide conditions under which continuous functions in a neighborhood of the graph of
an upper semicontinuous multivalued map F with convex compact images inherit isolating
neighborhoods and their associated Conley index from F . Results of this form are essential.
The isolating neighborhood and Conley index computations in Theorems 1.2, 1.3, and 1.4
are done using the sunflower enclosure F , but the results of interest concern the dynamics
generated by continuous functions in aε(F ).

The conclusions of Theorems 1.2 and 1.3 involve the existence of a semiconjugacy. As
indicated above this is done via the Conley index. Because we work with upper semicontinuous
multivalued maps that need not admit a continuous selector, we need to work with weak index
pairs. The classical result of Szymczak [34, 35, 36] that proves the existence of a semiconjugacy
onto symbolic dynamics is based on a stronger definition of an index pair and therefore cannot
be applied directly. Section 9 presents theorems that are an extension of Szymczak’s results.
Sections 6–8 provide the necessary background to prove the results of section 9.

The fact that Theorems 1.2 and 1.3 contain explicit bounds on the class of maps, e.g.,
aε(F ) with ε = δ/2 is important for the development of models. Section 5 provides explicit
information about the preservation of topological and dynamical properties for continuous
functions near F .

Finally, the proofs of Theorems 1.2, 1.3, and 1.4 are presented in section 10.

2. Preliminaries. Throughout this paper by an interval in the set of integers Z we mean
the intersection of a closed interval in R with Z. For n ≥ 1 let In := {1, 2, . . . , n} and for
p ≥ 2 let Zp := {0, 1, . . . , p − 1} denote the additive topological group with addition modulo
p and discrete topology.
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Given a topological space X and a subset A ⊂ X, by intX A, clX A we denote the interior
of A in X and the closure of A in X, respectively. We omit the symbol of space if the space
is clear from the context.

Let X, Y be topological spaces. By F : X ( Y we denote a multivalued map, that is, a
map F : X 3 x 7→ F (x) ∈ P(Y ), where P(Y ) is the power set of Y . A multivalued map F is
upper semicontinuous if for any closed B ⊂ Y its large counterimage under F , that is, the set
F−1(B) := {x ∈ X | F (x) ∩B 6= ∅}, is closed.

Throughout the paper we identify F with its graph, the set {(x, y) ∈ X × Y | y ∈ F (x)}.
In the following, we are interested in multivalued self-maps, that is, multivalued maps of the
form F : X ( X.

Let I be an interval in Z with 0 ∈ I. A single valued mapping σ : I → X is a solution for F
through x ∈ X if σ(n+ 1) ∈ F (σ(n)) for all n, n+ 1 ∈ I and σ(0) = x (cf. [19, Definition 2.3]).
Given a subset N ⊂ X, the set

Inv(N,F ) := {x ∈ N | ∃σ : Z→ N a solution for F through x}

is called the invariant part of N . A compact subset N ⊂ X is an isolating neighborhood for F
if Inv(N,F ) ⊂ intN . A compact subset N ⊂ X is called an isolating block with respect to F
if

N ∩ F (N) ∩ F−1(N) ⊂ intN.

Note that any isolating block is an isolating neighborhood. A compact set S ⊂ X is said to
be invariant with respect to F if S = Inv(S, F ). It is called an isolated invariant set if it
admits an isolating neighborhood N for F such that S = Inv(N,F ) (cf. [2, Definition 4.1,
Definition 4.3]).

By F -boundary of a given set A ⊂ X we mean bdF A := clA ∩ cl(F (A) \A).

Definition 2.1 (cf. [2, Definition 4.7]). Let N ⊂ X be an isolating neighborhood for F . A
pair P = (P1, P2) of compact sets P2 ⊂ P1 ⊂ N is called a weak index pair in N if

(a) F (Pi) ∩N ⊂ Pi for i ∈ {1, 2};
(b) bdF P1 ⊂ P2;
(c) Inv(N,F ) ⊂ int(P1 \ P2);
(d) P1 \ P2 ⊂ intN .

A set B ⊂ X is acyclic if it has the (co)homology of a point. The multivalued map
F : X ( X is acyclic if it has acyclic values, that is, if for each x ∈ X the set F (x) is acyclic.

Given a weak index pair P in an isolating neighborhood N ⊂ X for F we set

TN (P ) := (TN,1(P ), TN,2(P )) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN)).

Recall (cf., e.g., [2, 24]) that FP , the restriction of F to the domain P , is a multivalued map
of pairs, FP : P ( TN (P ); the inclusion iP : P → TN (P ) induces an isomorphism in the
Alexander–Spanier cohomology; and the index map IFP

is defined as an endomorphism of
H∗(P ) given by

IFP
= F ∗P ◦ (i∗P )−1.

The pair (H∗(P ), IFP
) is a graded module equipped with an endomorphism. Applying the

Leray functor L (cf. [25, 2]) to (H∗(P ), IFP
) we obtain a graded module with its endomorphism
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which we call the Leray reduction of the Alexander–Spanier cohomology of a weak index pair
P .

Definition 2.2 (cf. [2, Definition 6.3]). The graded module L(H∗(P ), IFP
), that is, the

Leray reduction of the Alexander–Spanier cohomology of a weak index pair P is called the
cohomological Conley index of Inv(N,F ) and denoted by C(Inv(N,F ), F ).

3. Dynamics of upper semicontinuous maps. Let (X, d) be a metric space. By Br(x) we
denote the open ball with the center in x ∈ X and radius r > 0. Closed balls will be denoted
by B̄r(x). For a given A ⊂ X, Br(A) will stand for an open r-hull of A, that is,

Br(A) :=
⋃
{Br(a) | a ∈ A}.

Let F : X ( X be an upper semicontinuous map. One can easily verify that (multivalued)
selections of F share with F its isolating neighborhood and a weak index pair. We express
this observation here for further reference.

Proposition 3.1. Assume N is an isolating neighborhood for an upper semicontinuous
F : X ( X, P is a weak index pair for F in N , and G : X ( X is an upper semicon-
tinuous map such that G ⊂ F . Then N is an isolating neighborhood for G, and P is a weak
index pair for G in N .

The aim of this section is to show that, to a certain extent, the reverse implications hold
true. To be precise, we have the following theorem.

Theorem 3.2. Let N be an isolating neighborhood with respect to an upper semicontinuous
map F : X ( X. There exists an ε > 0 such that N is an isolating neighborhood with respect
to an arbitrary upper semicontinuous map G : X ( X with G ⊂ B(F, ε).

We postpone its proof to the end of this section.

Lemma 3.3. Let A ⊂ X be a compact set and let {xn} ⊂ X be a sequence convergent to
x ∈ X. If xn ∈ B(A, 1

n) for n ∈ N then x ∈ A.

Proof. Suppose the contrary and consider an r > 0 such that B(x, r) ∩ A = ∅. Observe
that, for large enough n ∈ N, we have d(xn, x) ≤ r

2 . Moreover, there exists a sequence
{un} ⊂ A with d(un, xn) ≤ 1

n for n ∈ N. However, d(xn, un) ≥ d(un, x)−d(xn, x) ≥ r− r
2 = r

2 ,
a contradiction.

Lemma 3.4. Let F : X ( X be upper semicontinuous and let N ⊂ X be compact. A
solution τ : Z→ N for F through x ∈ N exists provided for any n ∈ N there exists a solution
σ : [−n, n]→ N through x.

Proof. Let σn : [−n, n]→ N be a solution with respect to F through x. By induction we
construct a sequence of solutions τn : [−n, n]→ N for F through x such that

(p1) there exists a strictly increasing sequence {mp} ⊂ N such that τn(k) = limp→∞ σ
mp(k)

for any k ∈ [−n, n];
(p2) τn−1 ⊂ τn for n ≥ 1.

Define τ0 : [0] → N by putting τ0(0) := x. Clearly (p1) and (p2) hold. Suppose τn

has been constructed so that (p1) and (p2) hold. Denote σ̄p := σmp and take into account
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a subsequence p̄ such that the sequences σ̄p̄(n + 1) and σ̄p̄(−n − 1) converge to v, w ∈ N ,
respectively. We define τn+1 : [−n− 1, n+ 1]→ N by

τn+1(k) :=


τn(k), |k| ≤ n,

v, k = n+ 1,
w, k = −n− 1.

It is straightforward to see that conditions (p1) and (p2) hold, and τn+1(0) = x. It remains
to be verified that τn+1 is a solution for F . Since σ̄p is a solution for F , we have

(2) σ̄p̄(k + 1) ∈ F (σ̄p̄(k)), k ∈ Z.

For any k ∈ [−n − 1, n + 1] the sequence σ̄p̄(k) converges to τn+1(k). Because the graph
of F is closed (cf. [14, Proposition 14.4]), passing to the limit in (2) we have τn+1(k + 1) ∈
F (τn+1(k)).

Proof of Theorem 3.2. For contradiction suppose that for any m ∈ N there exists an upper
semicontinuous Gm : X ( X with Gm ⊂ B(F, 1

m) and such that Inv(N,Gm) ∩ bdN 6= ∅.
Let xm ∈ Inv(N,Gm) ∩ bdN . Passing to a subsequence, if necessary, we may assume that
xm converges to an x ∈ bdN . Let σm : Z → N be a solution for Gm through xm. Fix
an integer n ∈ N, choose a subsequence mp such that for any k ∈ [−n, n] the sequence
σmp(k) is convergent, and define τn : [−n, n] → N by putting τn(k) := limp→∞ σmp(k) for
k ∈ [−n, n]. We have (σmp(k), σmp(k + 1)) ∈ Gmp ⊂ B(F, 1

mp
). Using Lemma 3.3 we infer

that (τn(k), τn(k + 1)) ∈ F , which means that τn : [−n, n] → N is a solution for F through
x. This, along with Lemma 3.4, yields the existence of a solution τ : Z→ N for F through x.
However, x ∈ bdN , a contradiction.

4. ε-Approximations. In the following we consider the Cartesian product of normed spa-
ces as the normed space with the max-norm.

Following [15] (cf., e.g., [14]) we say that a continuous single valued map f : X → X is a
continuous ε-approximation (on the graph) of F : X ( X if f ⊂ Bε(F ). We denote the set
of continuous ε-approximations of F by aε(F ).

Theorem 4.1. Let Y be a normed space and let X ⊂ Y be compact. Assume that F : X (
X is an upper semicontinuous map with convex and compact values, and N is an isolating
neighborhood with respect to F . Then

(i) there exists an ε0 > 0 such that, for any 0 < ε ≤ ε0, there is a continuous ε-
approximation f : X → X of F such that N is an isolating neighborhood with respect
to f , and C(Inv(N,F ), F ) = C(Inv(N, f), f);

(ii) if X is an absolute neighborhood retract (ANR) then there exists a δ > 0 such that
for any continuous δ-approximation g : X → X of F we have C(Inv(N,F ), F ) =
C(Inv(N, g), g).

Proof. Take an ε0 > 0 as in Theorem 3.2 and 0 < ε ≤ ε0. By [6, Theorem 1] there exists
a continuous ε-approximation f : X → X of F . We shall prove that f satisfies the assertions
(i) and (ii).

To this end, for λ ∈ [0, 1], we define Fλ : X ( X by

Fλ(x) := λf(x) + (1− λ)F (x), x ∈ X.

D
ow

nl
oa

de
d 

01
/1

6/
21

 to
 1

28
.6

.3
7.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONLEY INDEX APPROACH TO SAMPLED DYNAMICS 679

It follows from the upper semicontinuity of F and the continuity of f that Fλ is upper semi-
continuous and it is straightforward to observe that Fλ has convex and compact values.

According to the construction of the ε-approximation f of F in [6], for arbitrarily fixed x ∈
X there exists an x′ ∈ Bε(x) such that f(x) ∈ Bε(F (x′)) and F (x) ⊂ Bε(F (x′)). Therefore, for
any λ ∈ [0, 1], we have Fλ(x) ⊂ Bε(F (x′)), as Bε(F (x′)) is convex. Consequently, Fλ ⊂ Bε(F ).
Theorem 3.2 shows that N is an isolating neighborhood with respect to Fλ for every λ ∈ [0, 1].
Therefore, by the continuation property of the Conley index (cf. [1, Theorem 6.1]), we have
C(Inv(N,F ), F ) = C(Inv(N, f), f).

Let an ε > 0 be as above. By [14, Theorem 23.9] there is a δ ∈ (0, ε] such that for
any f, g : X → X, the δ-approximations of F , there exists a homotopy h : X × [0, 1] → X
joining f and g, such that h(·, t) is an ε-approximation of F , for all t ∈ [0, 1]. Fix such a
δ > 0 and consider f : X → X, a δ-approximation of F defined as in [6]. Let g : X → X
be an arbitrary δ-approximation of F . Since δ ≤ ε, by [15, Theorem 5.13] (cf., e.g., [14,
Theorem 23.9]) and Theorem 3.2, Inv(N, f) and Inv(N, g) are related by continuation; hence
C(Inv(N, g), g) = C(Inv(N, f), f). This, along with property (i), completes the proof.

5. ε-Approximations of cubical maps. In this section we assume that X ⊂ Rd is a closed
subset and F : X ( X is a multivalued cubical map (cf., e.g., [18]), a scale δ > 0 responsible
for δ-cubes is fixed, and % stands for the max metric in Rd. For x ∈ Rd by σx we denote the
unique elementary cube such that x ∈ σ̊x. For ε > 0 define maps Fε, F

ε : X ( X by

(3) Fε(x) := F (B̄ε(x))

and

(4) F ε(x) := B̄ε(F (x)).

We refer to maps Fε and F ε as a horizontal and a vertical enclosure of F , respectively.
We begin with some auxiliary lemmas.

Lemma 5.1. Assume A1, A2 ⊂ X are cubical, ε ∈ (0, 1
2δ), and y ∈ B̄ε(A1)∩ B̄ε(A2). Then,

there exists a y′ ∈ A1 ∩A2 such that %(y, y′) ≤ 2ε.

Proof. For i = 1, 2 let yi ∈ Ai be such that %(yi, y) < ε. Then σy1 ∩ σy2 6= ∅ and σyi ⊂ Ai.
Let y′ ∈ σy1 ∩ σy2 . Then y′ ∈ A1 ∩A2 and %(y, y′) ≤ %(y, y1) + %(y1, y

′) ≤ 2ε.

Lemma 5.2. Assume P ⊂ M ⊂ Rd are cubical and 0 < ε < 1
2δ. Then the inclusion

µ : P ∪M → B̄ε(P ) ∪M induces an isomorphism in cohomology.

Proof. Consider the multivalued map G : B̄ε(P ) ∪M →M given by

G(x) := {y ∈M | %(x, y) = %(x,M)}.

This map has compact values and is upper semicontinuous (see [27, Lemma 1]). Since G(x) =
{x} for x ∈M , we see that G◦µ = idP∪M . We will show that µ◦G is homotopic to idB̄ε(P )∪M .

One easily verifies that G(x) = B̄%(x,M)(x) ∩M . Let

Q := {Q ∈ K | Q ⊂M,Q ∩ B̄%(x,M)(x) 6= ∅}
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and Q′ := {Q ∩ B̄ε(x) | Q ∈ Q}. Then G(x) =
⋃
Q′∈Q′ Q

′. Each Q′ ∈ Q′ is a rectangle as
an intersection of rectangles. Hence it is convex. We claim that

⋂
Q′∈Q′ Q

′ 6= ∅. For this end
it suffices to show that Q′1 ∩ Q′2 6= ∅ for any Q′1, Q

′
2 ∈ Q′. Since Q′i 6= ∅, i ∈ {1, 2}, take

xi ∈ Q′i. Then x1, x2 ∈ B̄ε(x), which means that %(x1, x2) ≤ 2ε. Since ε < 1
2δ, this implies

that Q′1 ∩Q′2 6= ∅. Thus, G(x) is star-shaped (cf. [18, Definition 2.82]), hence, acyclic.
For λ ∈ [0, 1] let

Gλ(x) := {(1− λ)x+ λy | y ∈ G(x)}

and D(x) :=
⋃
λ∈[0,1]Gλ(x). Note that if x ∈ M then Gλ(x) = D(x) = {x}. Also if x ∈

B̄ε(P ) ∪M then D(x) ⊂ B̄ε(P ) ∪M . Therefore,

[0, 1]× (B̄ε(P ) ∪M) 3 (λ, x) 7−→ Gλ(x) ⊂ B̄ε(P ) ∪M

is the requested homotopy between µ ◦G and idB̄ε(P )∪M .

As a consequence of the previous lemma we have the following lemma.

Lemma 5.3. Assume A ⊂ Rd is a cubical set and 0 < ε < 1
2δ. Then A and B̄ε(A) are

homotopy equivalent.

Now we enumerate a few properties of the enclosures.

Lemma 5.4. The map Fε has the following properties:
(i) If A ⊂ X then F−1

ε (A) = B̄ε(F
−1(A)).

(ii) If F is upper semicontinuous then so is Fε.
(iii) If ε < 1

2δ and F is upper semicontinuous then for any x ∈ X there is y ∈ X with
F (y) = Fε(x).

(iv) If ε < 1
2δ and F is upper semicontinuous and convex valued then so is Fε.

(v) If ε < 1
2δ and F is upper semicontinuous and has contractible values then so does Fε.

(vi) If ε < 1
2δ and F is an upper semicontinuous map with convex values then Fε admits a

continuous selection.
(vii) If A ⊂ X is a cubical set and F is upper semicontinuous then Fε(A) = F (A) whenever

ε < 1
2δ.

Proof. In order to prove inclusion B̄ε(F
−1(A)) ⊂ F−1

ε (A) in (i) take an x ∈ B̄ε(F−1(A))
and an x′ ∈ F−1(A) such that x ∈ B̄ε(x′). Then F (x′) ∩ A 6= ∅. Take a y ∈ F (x′) ∩ A. Then
y ∈ Fε(x) and Fε(x) ∩A 6= ∅ which proves that x ∈ F−1

ε (A).
In the reverse direction, take an x ∈ F−1

ε (A), a y ∈ Fε(x) ∩ A, and an x′ ∈ B̄ε(x) such
that y ∈ F (x′). It means that F (x′) ∩A 6= ∅ and x′ ∈ F−1(A). Therefore x ∈ B̄ε(F−1(A)).

By (i), the large counterimage under Fε of any closed set in its range is closed. Hence, Fε
is upper semicontinuous, and we have (ii).

In order to show (iii), fix x ∈ X and consider the set

A(x) :=
{
Q̊ | Q̊ is a cell, Q̊ ∩ B̄ε(x) 6= ∅

}
.

Note that A(x) 6= ∅. Since ε < 1
2δ, for any Q̊, Q̊′ ∈ A(x) we have Q ∩ Q′ 6= ∅. Then

P :=
⋂
Q̊∈A(x)Q 6= ∅ and P is an elementary cube. Moreover, P is a face of every cube Q
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with Q̊ ∈ A(x). Then, for any y ∈ P̊ we have F (y) = F (B̄ε(x)) = Fε(x), as F is upper
semicontinuous.

Properties (iv) and (v) follow from (iii).
We shall prove (vi). To this end consider F̃ε : X ( X given by

F̃ε(x) := F (Bε(x)), x ∈ X.

It is easy to see, by the same reasoning as for Fε, that F̃ε has nonempty convex and com-
pact values. Moreover, the large counterimage under F̃ε of any single point in its range is
open, hence, F̃ε is lower semicontinuous. Consequently, by Michael’s selection theorem (cf.,
e.g., [21]), there exists a continuous map f : X → X, a selection of F̃ε. Clearly F̃ε ⊂ Fε,
hence, f is a continuous selection of Fε, as desired.

In order to prove (vii) take a y ∈ Fε(A). Then there exist an x ∈ A such that y ∈ Fε(x) and
an x′ ∈ B̄(x, ε) such that y ∈ F (x′). Then σx ∩ σx′ 6= ∅, because %(x, x′) ≤ 2ε < δ. It follows
that we can take an x′′ ∈ σx ∩ σx′ . By the upper semicontinuity of F we set F (x′) ⊂ F (x′′).
Hence, y ∈ F (x′′) ⊂ F (σx) ⊂ F (A). The inclusion in the reverse direction is obvious.

Lemma 5.5. The map F ε has the following properties:
(i) If A ⊂ X then F ε(A) = B̄ε(F (A)).

(ii) If F is upper semicontinuous, then so is F ε.
(iii) If F is convex valued then so is F ε.
(iv) If ε < 1

2δ and a cubical map F has contractible values then so does F ε.
(v) If A ⊂ X is a cubical set and F is cubical then (F ε)−1(A) = F−1(A) for any 0 ≤ ε < δ.

Proof. To prove (i) observe that

F ε(A) =
⋃
x∈A

F ε(x) =
⋃
x∈A

B̄ε(F (x))

=
⋃
x∈A

⋃
y∈F (x)

B̄ε(y) =
⋃

y∈F (A)

B̄ε(y) = B̄ε(F (A)).

Properties (ii) and (iii) are obvious.
Property (iv) is a consequence of Lemma 5.3.
In order to show inclusion F−1(A) ⊂ (F ε)−1(A) in (v) take x ∈ F−1(A). It means that

F (x) ∩A 6= ∅ and F ε(x) ∩A 6= ∅. Hence x ∈ (F ε)−1(A).
To prove the opposite inclusion take an x ∈ (F ε)−1(A). Since F ε(x) ∩ A 6= ∅, there exist

a y ∈ F ε(x) ∩ A and a y′ ∈ F (x) such that y ∈ B̄ε(y
′). We have σy ∩ σy′ 6= ∅, because

%(y, y′) ≤ ε < δ. Take y′′ ∈ σy ∩ σy′ . Then y′′ ∈ σy′ = cl σ̊y′ ⊂ F (x), because F is cubical.
Notice that y ∈ σ̊y ∩ A. Thus, y′′ ∈ σy ⊂ A, because A is a cubical set. It follows that
F (x) ∩A 6= ∅ and x ∈ F−1(A) which completes the proof.

Horizontal enclosures preserve isolating neighborhoods and weak index pairs. More pre-
cisely, we have the following propositions.

Proposition 5.6. Assume F : X ( X is a cubical, upper semicontinuous multivalued map
and N is a cubical isolating neighborhood for F . Then, for any ε < δ, we have Inv(N,Fε) ⊂
B̄ε(Inv(N,F )). As a consequence, N is an isolating neighborhood for Fε.
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Proof. Take an arbitrary x0 ∈ Inv(N,Fε) and consider x : Z → N , a solution for Fε in
N through x0. Let n ∈ Z be fixed. We have xn+1 ∈ Fε(xn). There exists an x′n ∈ N such
that Fε(xn) = F (x′n) and %(x′n, xn) ≤ ε < δ. Therefore we can take an x′′n ∈ σxn ∩ σx′n such
that %(x′′n, xn) ≤ ε and F (x′n) ⊂ F (x′′n), as F is upper semicontinuous. We have xn+1 ∈
F (x′n) and σxn+1 ⊂ F (x′n), because F is cubical. Moreover, x′′n+1 ∈ F (x′n) ⊂ F (x′′n) and
%(x′′n, xn) ≤ %(x′n, xn) ≤ ε. Since n ∈ Z was arbitrarily fixed, we have constructed x′′ : Z→ N ,
a solution for F in N with %(x′′n, xn) ≤ ε. In particular, x0 ∈ B̄ε(Inv(N,F )), showing that
Inv(N,Fε) ⊂ B̄ε(Inv(N,F )).

Since Inv(N,F ) ⊂ intN and ε < δ, the latter inclusion yields Inv(N,Fε)
⊂ B̄ε(Inv(N,F )) ⊂ intN . This completes the proof.

Proposition 5.7. Assume F : X ( X is a cubical, upper semicontinuous multivalued map,
N is a cubical isolating neighborhood for F , P is a cubical weak index pair in N , and ε < 1

2δ.
Then P is a weak index pair for Fε.

Proof. Properties (a) and (b) of Definition 2.1 are straightforward consequences of Lemma
5.4(vii).

By Theorem 5.6 we have Inv(N,Fε) ⊂ B̄ε(Inv(N,F )) ⊂ int(P1 \ P2), and property (c)
follows.

Property (d) is obvious.

Note that, in general, Fε is not a cubical map. However, it inherits from F the following
property.

Lemma 5.8. If F : X ( X is a cubical map and ε < 1
2δ, then

(5) Fε(y) ⊂ Fε(x) whenever σx ⊂ σy.

Proof. Since ε < 1
2δ and σx ⊂ σy, for an arbitrary elementary cube σ, condition σ∩B̄ε(y) 6=

∅ implies σ ∩ B̄ε(x) 6= ∅. Therefore, taking into account that F is cubical, we have

Fε(y) = F (B̄ε(y))

=
⋃

z∈B̄ε(y)

F (z)

=
⋃

σ∩B̄ε(y) 6=∅

F (̊σ)

⊂
⋃

σ∩B̄ε(x) 6=∅

F (̊σ)

=
⋃

z∈B̄ε(x)

F (z)

= F (B̄ε(x))

= Fε(x).

This completes the proof.D
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Proposition 5.9. Assume F : X ( X is a cubical, upper semicontinuous multivalued map
and N is a cubical isolating neighborhood for F . Then N is an isolating neighborhood for
(Fε)

ε for any ε < 1
2δ.

Proof. For contradiction, suppose that x0 ∈ bdN and x : Z→ N is a solution for (Fε)
ε in

N through x0.
Let n ∈ Z be fixed. We have xn+1 ∈ (Fε)

ε(xn). There exists an x′n+1 ∈ Fε(xn) with
%(x′n, xn) ≤ ε < 1

2δ. Then σxn+1 ∩ σx′n+1
6= ∅, and we can take x′′n+1 ∈ σxn+1 ∩ σx′n+1

. Since

N is cubical and xn+1 ∈ N , we infer that σxn+1 ⊂ N . Hence, x′′n+1 ∈ σxn+1 ∩ σx′n+1
⊂ N .

Similarly, x′′n+1 ∈ σxn+1 ∩ σx′n+1
⊂ Fε(xn), as x′n+1 ∈ Fε(xn) and Fε(xn) is a cubical set. By

Lemma 5.8 we have Fε(xn) ⊂ Fε(x
′′
n). This, along with x′′n+1 ∈ Fε(xn) yields x′′n+1 ∈ Fε(x′′n).

Since n ∈ Z was arbitrarily fixed, we have defined x′′ : Z→ N , a solution with respect to Fε
in N .

Note that x′′0 ∈ bdN , because x0 ∈ bdN , x′′0 ∈ σx0 , and bdN is a cubical set. This
contradicts Proposition 5.6, and completes the proof.

The following theorem is a counterpart of Theorem 4.1 for cubical maps.

Theorem 5.10. Assume that F : X ( X is an upper semicontinuous cubical map with
contractible values and ε < 1

2δ. Then aε(F ) 6= ∅. Moreover, if N is a cubical isolating
neighborhood with respect to F then N is an isolating neighborhood with respect to arbitrary
f ∈ aε(F ), and C(Inv(N, f), f) = C(Inv(N,F ), F ).

Proof. The existence of an ε-approximation f : X → X of F follows from [15, Theo-
rem 5.12] (cf., e.g., [14, Theorem 23.8]).

Since F has contractible values then, by Lemma 5.4(v) and Lemma 5.5(iv), so does
(Fε)

ε. Moreover, by Proposition 5.9, N is an isolating neighborhood with respect to (Fε)
ε.

Therefore we have a well-defined Conley index C(Inv(N, (Fε)
ε), (Fε)

ε). Since, in addition
F ⊂ (Fε)

ε, we infer that C(Inv(N,F ), F ) = C(Inv(N, (Fε)
ε), (Fε)

ε). Note that if f : X → X
is an ε-approximation of F , then we have f ⊂ (Fε)

ε, and the identity C(Inv(N, f), f) =
C(Inv(N, (Fε)

ε), (Fε)
ε) follows. This completes the proof.

A statement analogous to Proposition 5.7 for map F ε is not true, however, an approximate
version holds.

Theorem 5.11. Assume that F : X ( X is an upper semicontinuous map with cubical
values satisfying (5), P is a cubical weak index pair with respect to F in a cubical isolating
neighborhood N , and ε < 1

2δ. Then B̄ε(P ) is a weak index pair for F ε in B̄ε(N).

Proof. For the proof of property (a) in Definition 2.1 fix an i ∈ {1, 2} and take an x ∈
B̄ε(Pi) and a y ∈ F ε(x) ∩ B̄ε(N). Then, there exists an x′ ∈ Pi such that %(x, x′) < ε and
by Lemma 5.1 there exists a y′ ∈ F (x) ∩ N such that %(y, y′) < 2ε < δ. Then σx ∩ σx′ 6= ∅
and we can take an x′′ ∈ σx ∩ σx′ such that %(x, x′′) < ε. By (5) we have F (x′′) ⊃ F (x) and
since P is cubical, we have x′′ ∈ τ ⊂ Pi. Similarly, %(y, y′) < 2ε < δ implies that there exists
a y′′ ∈ σy ∩ σy′ such that %(y, y′′) < ε. Since F (x) and N are cubical and y′ ∈ σ̊y′ ∩F (x)∩N ,
we get σy′ ⊂ F (x) ∩ N . Therefore y′′ ∈ F (x) ∩ N ⊂ F (x′′) ∩ N . By property (a) of P , we
have y′′ ∈ Pi. Hence, y ∈ B̄ε(Pi).
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In order to prove property (b) assume the contrary. Let x ∈ bdF ε B̄ε(P1) \ B̄ε(P2). It
means that x ∈ B̄ε(P1), x ∈ cl(F ε(B̄ε(P1)) \ B̄ε(P1)), and x /∈ B̄ε(P2). Take an x′ ∈ P1 such
that %(x, x′) < ε. Then x′ /∈ P2, that is x′ ∈ P1 \ P2. Consider a sequence (xn)n∈N such that
xn ∈ F ε(B̄ε(P1)) \ B̄ε(P1) and xn → x. It follows that for every n ∈ N we have xn ∈ F ε(un)
for some un ∈ B̄ε(P1). Take a u′n ∈ P1 such that %(un, u

′
n) < ε and a zn ∈ F (un) such that

%(xn, zn) < ε. We have zn /∈ P1, because otherwise xn ∈ B̄ε(P1). By %(un, u
′
n) < ε, we

can take u′′n ∈ σun ∩ σu′n . Since P is cubical, we have u′′n ∈ P1. Since F is cubical, we have
F (u′′n) ⊃ F (un). Hence, zn ∈ F (P1) \ P1. Without loss of generality we may assume that
zn → z ∈ cl(F (P1) \ P1). Since

%(z, x′) ≤ %(z, x) + %(x, x′) ≤ 2ε < δ,

we can find z̄ ∈ σz ∩ σx′ ∩ σx with %(x, z̄) ≤ ε. We have z̄ ∈ cl(F (P1) \ P1) ∩ P1, because
σ̊z ⊂ cl(F (P1) \ P1) and σx′ ⊂ P1. By property (b) of P , z̄ ∈ P2. It follows that x ∈ B̄ε(P2),
a contradiction.

We shall prove that

(6) Inv(B̄ε(N), F ε) ⊂ B̄ε(Inv(N,F )).

Let x : Z → B̄ε(N) be a solution for F ε in B̄ε(N). For each xi ∈ B̄ε(N), we can choose an
x′i ∈ N such that %(xi, x

′
i) < ε. Since xi+1 ∈ F ε(xi) = B̄ε(F (xi)), we can take a zi+1 ∈ F (xi)

such that %(zi+1, xi+1) < ε. We have σzi∩σxi∩σx′i 6= ∅, because %(zi, xi) < ε and %(xi, x
′
i) < ε.

Since F has cubical values we get σzi+1 ⊂ F (xi). For each i ∈ Z choose a ui ∈ σzi∩σxi∩σx′i . By
(5) we get ui+1 ∈ σzi+1 ⊂ F (xi) ⊂ F (ui). Since N is cubical and x′i ∈ N , we get ui ∈ σx′i ⊂ N .

Thus, ui ∈ Inv(N,F ) and since %(xi, ui) ≤ %(xi, x
′
i) ≤ ε, we get xi ∈ B̄ε(Inv(N,F )). This

proves (6).
Now, since Inv(N,F ) as an intersection of cubical sets is cubical and Inv(N,F ) ⊂ intP1,

we have

B̄ε(Inv(N,F )) ⊂ intP1 ⊂ P1 ⊂ int B̄ε(P1).

And, since Inv(N,F )∩P2 = ∅ and the sets are compact, we have B̄ε(Inv(N,F ))∩ B̄ε(P2) = ∅.
Hence, Inv(B̄ε(N), F ε) ⊂ int(B̄ε(P1) \ B̄ε(P2)), which proves property (c).

In order to prove property (d) it suffices to show that

(7) B̄ε(P1) \ B̄ε(P2) ⊂ N,

because N ⊂ int B̄ε(N). Thus, assume that (7) is not true and take an x ∈ (B̄ε(P1)\B̄ε(P2))\
N and choose an x′ ∈ P1 such that %(x, x′) < ε. Then x′ /∈ P2. Let x′′ ∈ σx ∩ σx′ . Since
P is cubical, we have x′′ ∈ σx′ ⊂ P1. We cannot have x′′ ∈ P2, because then %(x, x′′) < ε
implies x ∈ B̄ε(P2). Therefore, x′′ ∈ P1 \ P2 ⊂ intN by property (d) applied to F and N .
We have σ̊x ∩ N = ∅, because x /∈ N and N is cubical. Thus, x′′ ∈ N ∩ cl σ̊x ⊂ bdN , a
contradiction.

For the sake of simplicity in the next theorem for A ⊂ X we put Aε := B̄ε(A) and
E(A) := X \ intA.
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Theorem 5.12. Let F,G : X ( X be acyclic upper semicontinuous multivalued maps such
that F ⊂ G. Assume that N ⊂ X is a cubical isolating neighborhood with respect to F , P is
a cubical weak index pair in N , N ε is an isolating neighborhood with respect to G, and P ε is
a weak index pair for G in N ε. Then the diagram

H∗(P1, P2) H∗(P1 ∪ E(N), P2 ∪ E(N)) H∗(P1, P2)

H∗(P ε1 ∪ E(N), P ε2 ∪ E(N))

H∗(P ε1 , P
ε
2 ) H∗(P ε1 ∪ E(N ε), P ε2 ∪ E(N ε)) H∗(P ε1 , P

ε
2 )

F ∗ ι∗P

λ∗

κ∗

α∗

G∗ ι∗Pε

α∗

commutes and α∗, κ∗, λ∗ are isomorphisms for 0 < ε < 1
2δ.

Proof. Consider the following diagram

(P1, P2) (P1 ∪ E(N), P2 ∪ E(N)) (P1, P2)

(P ε1 ∪ E(N), P ε2 ∪ E(N))

(P ε1 , P
ε
2 ) (P ε1 ∪ E(N ε), P ε2 ∪ E(N ε)) (P ε1 , P

ε
2 ).

α

F

λ

ιP

α

G

κ

ιPε

The above diagram commutes up to inclusion, that is, λ◦F ⊂ κ◦G◦α and λ◦ ιP = κ◦ ιP ε ◦α.
Inclusions ιP , ιP ε , κ induce isomorphisms in cohomology by excision.

Let α|Pi and λ|Pi∪E(N) be restrictions of α, λ to appropriate sets, respectively. By Lemma 5.2,
inclusions α|Pi : Pi ↪→ P εi and λ|Pi∪E(N) : Pi ∪ E(N) ↪→ P εi ∪ E(N) induce isomorphisms in
cohomology for i = 1, 2. Since the following diagram

P2 P1 (P1, P2)

P ε2 P ε1 (P ε1 , P
ε
2 )

α|P2
α|P1 α

commutes, the diagram

... Hq(P2) Hq(P1) Hq(P1, P2) Hq−1(P2) ...

... Hq(P ε2 ) Hq(P ε1 ) Hq(P ε1 , P
ε
2 ) Hq−1(P ε2 ) ...

(α|P2
)q (α|P1

)q αq (α|P2
)q−1

also commutes. By Five Lemma, α∗ is an isomorphism. An analogous argument for pairs
(P1 ∪ E(N), P2 ∪ E(N)) and (P ε1 ∪ E(N), P ε2 ∪ E(N)) proves that λ∗ is an isomorphism
too.
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Theorem 5.13. Let F : X ( X be a cubical, upper semicontinuous multivalued map with
contractible values. Assume that N ⊂ X is a cubical isolating neighborhood with respect to
F , P is a cubical weak index pair in N , and 0 < ε < 1

2δ. Then aε(F ) 6= ∅, and every ε-
approximation of F has N as an isolating neighborhood and R := B̄ε(P )∩N as a weak index
pair. Moreover, index maps IFP

and IfR are conjugate.

Proof. By Propositions 5.6 and 5.7, N is an isolating neighborhood for Fε and P is a weak
index pair for Fε in N . By Lemma 5.4, Fε is upper semicontinuous and has contractible values.
Moreover, F ⊂ Fε, showing that index maps IFP

and IFεP
are conjugate. By Lemma 5.8 and

Theorem 5.11 applied for Fε we infer that B̄ε(N) is an isolating neighborhood for (Fε)
ε and

B̄ε(P ) is a weak index pair for (Fε)
ε in B̄ε(N). Note that, by Lemma 5.5, (Fε)

ε is upper
semicontinuous and has contractible values. Therefore, Theorem 5.12 applied for maps Fε
and (Fε)

ε, implies that index maps IFεP
and I(Fε)εB̄ε(P )

are conjugate.

By Proposition 5.9, N is an isolating neighborhood for (Fε)
ε. Hence, by [2, Lemma 5.1],

R is a weak index pair for (Fε)
ε in N . The diagram

(R1, R2) (R1 ∪ E(N), R2 ∪ E(N)) (R1, R2)

(P ε1 , P
ε
2 ) (P ε1 ∪ E(N), P ε2 ∪ E(N)) (P ε1 , P

ε
2 )

α

(Fε)ε

id

ιR

α

(Fε)ε ιPε

in which inclusions α, ιR, and ιP ε are excisions, commutes. This, along with the fact that
pairs (R1, R2) and (P ε1 ∪ E(N), P ε2 ∪ E(N)) are associate, shows that index maps I(Fε)εB̄ε(P )

and I(Fε)εR
are conjugate.

Eventually we infer that IFP
and I(Fε)εR

are conjugate.
The existence of an ε-approximation f : X → X of F follows from [15, Theorem 5.12]

(cf., e.g., [14, Theorem 23.8]). Observe that for an arbitrary ε-approximation f : X → X of
F the inclusion f ⊂ (Fε)

ε holds. Therefore, index maps IfR and I(Fε)εR
are conjugate, and

the conclusion follows.

6. Index map and its iterates. Throughout this section we assume that X is a locally
compact metrizable space and f : X → X is a discrete dynamical system.

For convenience we shall use the notion of associated pairs introduced in [33]. Namely, we
say that a pair of paracompact sets P ′ = (P ′1, P

′
2) is associated with a weak index pair P with

respect to f , if
(a1) P ⊂ P ′;
(a2) P1 \ P2 = P ′1 \ P ′2;
(a3) f(P ) ⊂ P ′.

Note that if P ′ is associated with a weak index pair P then the pair of pairs (P, P ′) is
a weak index quadruple in the sense of [24]. Moreover, by (a2) the inclusion iPP ′ induces
an isomorphism in the Alexander–Spanier cohomology, and by (a3), we can consider the
restriction fPP ′ of f to the domain of P as a map of pairs fPP ′ : P → P ′.

Clearly, the pair TN (P ) is associated with P . Another pair associated with P is

SN (P ) := (SN,1(P ), SN,2(P )) := (P1 ∪ (f(P1) \ intN), P2 ∪ (f(P1) \ intN)).

D
ow

nl
oa

de
d 

01
/1

6/
21

 to
 1

28
.6

.3
7.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONLEY INDEX APPROACH TO SAMPLED DYNAMICS 687

Observe that SN (P ) is the smallest pair associated with P , i.e., for any pair P ′ associated
with P , we have SN,i(P ) ⊂ P ′i . Indeed, for i = 1 the inclusion follows directly from (a1) and
(a3). Note that in order to show the inclusion SN,2(P ) = P2 ∪ (f(P1) \ intN) ⊂ P ′2 it suffices
to verify that f(P1) \ intN ⊂ P ′2, as P2 ⊂ P ′2 by (a1). Suppose to the contrary that there
exists a y ∈ (f(P1) \ intN) \ P ′2. Then, by (a3) and (a2), y ∈ P ′1 \ P ′2 = P1 \ P2. However,
P1 \ P2 ⊂ intN ; hence y ∈ intN , a contradiction.

We have the commutative diagram

(TN,1(P ), TN,2(P ))

(P1, P2) (SN,1(P ), SN,2(P )) (P1, P2)

(P ′1, P
′
2)

fPP ′

fP

fPS(P )

j1

j2
iPP ′

iPS(P )

iP

in which iP , iPP ′ , iPS(P ), j1, and j2 are inclusions. Since any of the pairs in the diagram is
associated with P , each of the inclusions induces an isomorphism in cohomology. Hence, by
the commutativity of the diagram we obtain IfP = f∗PP ′ ◦ (i∗PP ′)

−1. For reference we state
this observation as the following.

Proposition 6.1. Let P be a weak index pair for f and let P ′ be a pair associated with P .
Then

(i) there is a well-defined map of pairs fPP ′ : P 3 x 7→ f(x) ∈ P ′;
(ii) the inclusion iPP ′ : P → P ′ induces an isomorphism in cohomology;
(iii) IfP = f∗PP ′ ◦ (i∗PP ′)

−1.

Proposition 6.2. Let M be an isolating neighborhood for f . For any n ∈ N there exists an
open neighborhood U of Inv(M,f) with clU ⊂M such that for any x ∈ U we have

fk(x) ∈ intM for k ∈ In.

Proof. Since S is compact and f is continuous, we can find an open set U ⊃ S with
clU ⊂M such that f(U) ∪ f2(U) ∪ · · · ∪ fk(U) ⊂ intM .

The following proposition is straightforward.

Proposition 6.3. If N is an isolating neighborhood for f then for any k ∈ N we have

(8) Inv(N, f) ⊂ Inv(N, fk).

Although the converse inclusion is not valid in general, we have the following proposition.

Proposition 6.4. Let S be an isolated invariant set with respect to f . For any k ∈ N there
exists an isolating neighborhood M of S such that

(9) Inv(M,f) = S = Inv(M,fk).

D
ow

nl
oa

de
d 

01
/1

6/
21

 to
 1

28
.6

.3
7.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

688 B. BATKO, K. MISCHAIKOW, M. MROZEK, AND M. PRZYBYLSKI

Proof. Let N̂ be an isolating neighborhood of S with respect to f . By Proposition 6.2
we can take an open neighborhood U of S such that

⋃k
i=1 f

k(U) ⊂ int N̂ . Let M ⊂ U be
an isolating neighborhood of S. We have S = Inv(M,f) ⊂ Inv(M,fk). To see the opposite
inclusion take an x ∈ Inv(M,fk). Then f ik(x) ∈ Inv(M,fk) for i ∈ Z. But Inv(M,fk) ⊂
M ⊂ U , therefore f j(f ik(x)) ∈ int N̂ for j ∈ Ik. Hence, x ∈ Inv(N̂ , f) = S.

Proposition 6.5. Let S be an isolated invariant set for f . For any n ∈ N there exist isolating
neighborhoods N ⊂ M of S and weak index pairs P and Q, respectively, in N and M , such
that for each k ∈ In

(i) P is a weak index pair for S and fk;
(ii) Q is associated with P with respect to fk;
(iii) TN (P ) is associated with Q with respect to f .

Proof. Fix an arbitrary n ∈ N and consider an isolating neighborhood M of S satisfying
(9). Take U ⊂ clU ⊂ M , an open neighborhood of S as in Proposition 6.2, and a compact
set N ⊂ U with S ⊂ intN . Note that such an N is an isolating neighborhood for fk for each
k ∈ {1, 2, . . . , n}. By [2, Theorem 4.12] we can find a weak index pair Q = (Q1, Q2) for f and
S in M such that Q1 \Q2 ⊂ intN . Define the pair P := (P1, P2) as the intersection

(10) P := Q ∩N.

According to [2, Lemma 5.1], P is a weak index pair for f in N . We shall prove that the pairs
P and Q satisfy assertions (i), (ii), and (iii).

First we prove that

(11) fk(P ) ⊂ Q for k ∈ In.

We argue by induction with respect to k. Since for i = 1, 2 we have Pi ⊂ N ⊂ U , by
Proposition 6.2, we get f(Pi) ⊂M . Therefore, f(Pi) ⊂ f(Qi)∩M ⊂ Qi, as Pi ⊂ Qi and Qi is
positively invariant with respect to f and M . Next, suppose that for some k ∈ In−1 we have
fk(Pi) ⊂ Qi. By Proposition 6.2, fk+1(Pi) ⊂M . Consequently, fk+1(Pi) ⊂ f(fk(Pi)) ∩M ⊂
f(Qi) ∩M ⊂ Qi. This completes the proof of (11).

We shall prove that P is a weak index pair with respect to each fk, k ∈ In. To this end fix
an arbitrary k ∈ {2, . . . , n} (recall that for k = 1 the assertion follows from [2, Lemma 5.1]).
Since P is a weak index pair in N ⊂ U with respect to f , we have P1 \ P2 ⊂ intN , as well
as Inv(N, fk) = Inv(N, f) ⊂ int(P1 \ P2). This shows that P satisfies properties (c) and (d)
of Definition 2.1 of a weak index pair for fk. Since property (a) follows easily from (11), it
remains to verify property (b), that is, bdfk(P1) ⊂ P2. Suppose to the contrary that there

exists a y ∈ bdfk(P1) \ P2. Then y ∈ P1 \ P2 and y ∈ cl(fk(P1) \ P1). Consider a sequence

{yn} ⊂ fk(P1) \P1 convergent to y. Since y ∈ P1 \P2 ⊂ intN , for sufficiently large n we have
yn ∈ intN . Consequently, yn ∈ fk(P1)∩ intN ⊂ fk(P1)∩N , which according to the property
(a) of P yields yn ∈ P1, a contradiction.

To prove (ii) observe that properties (a1) and (a2) are obvious and (a3) follows from (11).
We shall show (iii). Since N ⊂ M , by (10) it follows that Q ⊂ TN (P ), showing that

(a1) is satisfied. Condition (a2) is a direct consequence of (ii) and the fact that TN (P ) is
associated with P . It remains to verify property (a3). By (10) and the inclusion N ⊂ M it

D
ow

nl
oa

de
d 

01
/1

6/
21

 to
 1

28
.6

.3
7.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONLEY INDEX APPROACH TO SAMPLED DYNAMICS 689

follows that TM (Q) ⊂ TN (P ). This, along with the obvious inclusion f(Q) ⊂ TM (Q), implies
f(Q) ⊂ TN (P ), and completes the proof.

Proposition 6.6. Let N ⊂ M be isolating neighborhoods of S. Assume that P is a weak
index pair in N with respect to each fk, k ∈ Ip, and Q is a weak index pair with respect to f in
M . Moreover, assume that Q is associated with P with respect to fk, and TN (P ) is associated
with Q with respect to f . Then

(12) IfpP
= IpfP .

Proof. Fix an arbitrary k ∈ Ip. Since Q is associated with P with respect to fk, by
Proposition 6.1 we have

(13) IfkP
= (fkPQ)∗ ◦ (i∗PQ)−1.

Note that, for each k ∈ Ip−1, we have the commutative diagram

(Q1, Q2) (P1, P2)

(P1, P2) (TN,1(P ), TN,2(P )) (P1, P2)

fQTN (P )

iPQ

fPfkPQ

fk+1
P iP

in which iP and iPQ are inclusions. Moreover, the inclusions iP and iPQ induce isomorphisms
in cohomology, as excisions. Therefore, by the commutativity of the diagram and (13) we
obtain

Ifk+1
P

= (fk+1
P )∗ ◦ (iP

∗)−1

= (fkPQ)∗ ◦ (i∗PQ)−1 ◦ (fP )∗ ◦ (i∗P )−1

= IfkP
◦ IfP .

Taking into account that the above equality is valid for an arbitrary k ∈ Ip−1, the assertion
follows by induction.

Proposition 6.7. Assume N is an isolating neighborhood with respect to f and P is a weak
index pair for f in N . Moreover, assume N =

⋃n
i=1Ni, where Ni are pairwise disjoint compact

subsets of N . Then, for any I ⊂ In, the union
⋃
i∈I Ni =: NI is an isolating neighborhood for

f , and Q := P ∩NI is a weak index pair for f in NI .

Proof. Clearly, NI is compact. Since intNI = NI ∩ intN and N is an isolating neigh-
borhood for f , we have the inclusions Inv(NI , f) ⊂ Inv(N, f) ∩ NI ⊂ intN ∩ NI = intNI ,
showing that NI is an isolating neighborhood for f .

We shall verify that Q is a weak index pair in NI . It is obvious that Q2 ⊂ Q1 are compact
subsets of NI . For the proof of condition (a) in Definition 2.1 observe that f(Qi) ∩ NI ⊂
f(Pi) ∩ N ⊂ Pi, hence f(Qi) ∩ NI ⊂ Pi ∩ NI = Qi. Moreover, we have the inclusions
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Inv(NI , f) ⊂ intNI ∩ Inv(N, f) ⊂ intNI ∩ int(P1 \ P2) = int(Q1 \ Q2), showing that Q
satisfies condition (c). Next, observe that Q1 \ Q2 = (P1 \ P2) ∩ NI ⊂ intN ∩ NI = intNI ,
which means that Q satisfies condition (d). We still need to show that Q satisfies property
(b). Suppose to the contrary that there exists a y ∈ bdf (Q1) \ Q2. Then y ∈ Q1 \ Q2

and y ∈ cl(f(Q1) \ Q1). Thus we can take a sequence {yn} ⊂ f(Q1) \ Q1 convergent to y.
By the inclusion y ∈ Q1 \ Q2 ⊂ intNI , it follows that yn ∈ intNI for sufficiently large n.
Consequently, yn ∈ f(Q1) ∩ intNI ⊂ f(Q1) ∩NI , which according to the positive invariance
of Q1 with respect to f and NI yields yn ∈ Q1, a contradiction.

Proposition 6.8. Assume that N is an isolating neighborhood for f and P is a weak index
pair in N . Moreover, assume N = N1 ∪ N2, where N1, N2 are compact disjoint subsets
of N . Let P 1 := P ∩ N1, let ι : H∗(P 1) → H∗(P 1) × H∗(P 2) be the inclusion, and let
π : H∗(P 1)×H∗(P 2)→ H∗(P 1) be the projection. Then

(14) IfP1 = π ◦ IfP ◦ ι.

Proof. By Proposition 6.7, N1 is an isolating neighborhood for f , and P 1 is a weak index
pair in N1. Therefore, we have well-defined index maps IfP1 and IfP , associated with the

weak index pairs P 1 and P , respectively.
Consider the commutative diagram

(P1, P2) (TN,1(P ), TN,2(P )) (P1, P2)

(P 1
1 , P

1
2 ) (TN1,1(P 1), TN1,2(P 1)) (P 1

1 , P
1
2 )

fP

k

iP

j

fP1 iP1

j

in which iP , iP 1 , j, and k are inclusions. Recall that iP and iP 1 induce isomorphisms in
cohomology by the strong excision property. By the commutativity of the diagram we obtain
j∗ ◦ f∗P ◦ (i∗P )−1 = f∗P 1 ◦ (i∗P 1)−1 ◦ j∗, showing that

(15) j∗ ◦ IfP = IfP1 ◦ j∗.

Consider the commutative diagram

(P1, P2)

(P 1
1 , P

1
2 ) (P1, P2 ∪ P 2

1 )

κ
j

λ

in which κ and λ are inclusions. Note that λ induces an isomorphism in cohomology as an
excision. Moreover, by the commutativity of the diagram, λ∗ = j∗ ◦ κ∗, showing that

(16) j∗ ◦ (κ∗ ◦ (λ∗)−1) = idH∗(P 1
1 ,P

1
2 ) .

Note that κ∗ ◦ (λ∗)−1 : H∗(P 1) → H∗(P 1) × H∗(P 2) is an inclusion. Thus, κ∗ ◦ (λ∗)−1 = ι
and j∗ = π. Now, (14) follows from (15), which completes the proof.
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7. Determining orbits via the Ważewski property of the Conley index. Let X be a
locally compact metrizable space, and let f : X → X be a discrete dynamical system. Recall
that for p ≥ 2 we denote by Zp := {0, 1, . . . , p − 1} the topological group with the addition
modulo p and the discrete topology. We define the space X̄ := X × Zp with the product
topology, and dynamical systems f̄ , f : X̄ → X̄, by

(17) f̄ : X̄ 3 (x, i) 7−→ (f(x), i+ 1) ∈ X̄

and
f : X̄ 3 (x, i) 7−→ (f(x), i) ∈ X̄,

respectively. Consider the homeomorphism

l : X̄ 3 (x, i) 7−→ (x, i+ 1) ∈ X̄

and observe that we have

(18) f̄ = f ◦ l = l ◦ f.

Given A ⊂ X, by Ā we shall denote the set A× Zp.
Proposition 7.1. If N is an isolating neighborhood for f then N̄ is an isolating neighborhood

for both f̄ and f. Moreover, if P is a weak index pair for f in N then P̄ is a weak index pair
in N̄ for both f̄ and f.

Proof. Consider the dynamical system f̄ . Clearly N̄ is compact. We shall verify that
Inv(N̄ , f̄) ⊂ int N̄ . To this end consider x̄ = (x, i) ∈ Inv(N̄ , f̄). Let σ̄ : Z → X̄ be a
solution for f̄ passing through x̄, which is contained in N̄ , that is, σ̄(0) = x̄, σ̄(Z) ⊂ N̄ ,
and σ̄(k + 1) = f̄(σ̄(k)) for k ∈ Z. Define σ : Z → X by σ(k) := p(σ̄(k)) for k ∈ Z, where
p : X̄ 3 (x, i) 7→ x ∈ X denotes the projection. One can easily see that σ is a solution for f
through x in N . Therefore, x ∈ intN , as N is an isolating neighborhood for f . This shows
that x̄ = (x, i) ∈ intN × Zp = int N̄ , and completes the proof.

The verification that P̄ is a weak index pair for f̄ and N̄ is straightforward.
The proof for f is similar.

For i ∈ Zp define the map

(19) µi : X 3 x 7→ (x, i) ∈ X × {i}.

The following proposition is straightforward.

Proposition 7.2. Assume that N is an isolating neighborhood for f , and P is a weak index
pair in N . For any i ∈ Zp the set N × {i} is an isolating neighborhood for f , and P × {i} is
a weak index pair in N × {i}. Moreover,

IfP ◦ µ
∗
i = µ∗i ◦ IfP×{i} .

Proposition 7.3. Assume that N is an isolating neighborhood for f , and P is a weak index
pair in N . We have

(×p−1
i=0µ

∗
i ) ◦ If̄P̄ = (×p−1

i=0 IfP ) ◦ (×p−1
i=0µ

∗
i+1),

where ×p−1
i=0µ

∗
i : H∗(X̄)→×p−1

i=0 H
∗(X).
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Proof. By Proposition 7.1 the pair P̄ is a weak index pair with respect to f . Therefore,
the restriction f

P̄
of f to the domain P̄ is a map of pairs

f
P̄

: P̄ → TN̄ (P̄ ).

We claim that

(20) If̄P̄ = If
P̄
◦ l∗.

Indeed, note that l ◦ iP̄ = iP̄ ◦ l. Hence, l∗ ◦ (i∗
P̄

)−1 = (i∗
P̄

)−1 ◦ l∗ and, by the second equality
in (18), we get

If̄P̄ = f̄∗P̄ ◦ (i∗P̄ )−1

= (l ◦ f
P̄

)∗ ◦ (i∗P̄ )−1

= f∗
P̄
◦ l∗ ◦ (i∗P̄ )−1

= f∗
P̄
◦ (i∗P̄ )−1 ◦ l∗

= If
P̄
◦ l∗.

For i ∈ Zp denote by li the restriction of l to the domain X×{i}, and observe that li◦µi = µi+1.
Hence, µ∗i ◦ l∗i = µ∗i+1 and we have

(21) (×p−1
i=0µ

∗
i ) ◦ l∗ = (×p−1

i=0µ
∗
i ) ◦ (×p−1

i=0 l
∗
i ) = ×p−1

i=0 (µ∗i ◦ l∗i ) = ×p−1
i=0µ

∗
i+1.

Therefore, according to (20), in order to complete the proof it suffices to verify that

(×p−1
i=0µ

∗
i ) ◦ If P̄ = (×p−1

i=0 IfP ) ◦ (×p−1
i=0µ

∗
i ).

Since P̄ is a union of pairwise disjoint sets P × {i}, we have the product decomposition of
H∗(P̄ ) =×p−1

i=0 H
∗(P × {i}). Similarly, H∗(TN̄ (P̄ )) =×p−1

i=0 H
∗(TN (P ) × {i}), as the sets

TN (P ) × {i} are pairwise disjoint. According to the definition of f and Proposition 7.2, we
can consider the restriction f

P×{i} of f to the domain P × {i} as a map of pairs

f
P×{i} : P × {i} → TN (P )× {i}.

Thus, we have
f∗
P̄

= ×p−1
i=0 f

∗
P×{i}.

Similarly,
i∗P̄ = ×p−1

i=0 i
∗
P×{i}.

Consequently,

If
P̄

= f∗
P̄
◦
(
i∗P̄
)−1

=
(
×p−1
i=0 f

∗
P×{i}

)
◦
(
×p−1
i=0

(
i∗P×{i}

)−1
)

= ×p−1
i=0

(
f∗
P×{i} ◦

(
i∗P×{i}

)−1
)

= ×p−1
i=0 IfP×{i}
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Now, by Proposition 7.2, we obtain(
×p−1
i=0µ

∗
i

)
◦ If

P̄
=
(
×p−1
i=0µ

∗
i

)
◦
(
×p−1
i=0 IfP×{i}

)
= ×p−1

i=0

(
µ∗i ◦ IfP×{i}

)
= ×p−1

i=0 (IfP ◦ µ
∗
i )

=
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0µ

∗
i

)
,

which completes the proof.

From now on we assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint compact subsets

of N , N is an isolating neighborhood with respect to f , and P is a weak index pair for f in
N . Denote P i := P ∩Ni. Let p ∈ N and let σ := (σ0, . . . , σp−1) ∈ IZp

n .

(22) Iσ := ×p−1
i=0

(
πσi ◦ IfP ◦ ισi+1

)
,

where πi : H∗(P )→ H∗(P i) are projections, and ιi : H∗(P i)→ H∗(P ) are inclusions.

Consider the dynamical system f̄ on X̄ given by (17). For σ ∈ IZp
n set

Nσ :=

p−1⋃
i=0

(Nσi × {i})

and let

(23) Sσ := Inv(Nσ, f̄).

Proposition 7.4. The set Sσ is an isolated invariant set for f̄ , Nσ is its isolating neighbor-
hood, and there exists a weak index pair R for f̄ and Sσ such that

(24) Iσ ◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0µ

∗
i

)
◦ If̄R .

Moreover, Ip
f̄R

and Ipσ are conjugate.

Proof. First note that, by Proposition 7.1, N̄ is an isolating neighborhood for f̄ , and
P̄ is a weak index pair in N̄ . Clearly, Nσ is a compact subset of N̄ ; hence, according to
Proposition 6.7, Nσ is an isolating neighborhood for f̄ , and R := P̄ ∩Nσ is a weak index pair
in Nσ. Therefore, we have a well-defined index map If̄R for f̄ , associated with the weak index
pair R.

We shall prove that If̄R and Iσ satisfy (24). To this end consider projections

π̄k,i : H∗(P × {i})→ H∗(P k × {i})

and the inclusions ῑk,i : H∗(P k × {i})→ H∗(P × {i}) for k ∈ In and i ∈ Zp. One can observe

D
ow

nl
oa

de
d 

01
/1

6/
21

 to
 1

28
.6

.3
7.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

694 B. BATKO, K. MISCHAIKOW, M. MROZEK, AND M. PRZYBYLSKI

that, for any i ∈ Zp, we have
µ∗i ◦ π̄k,i = πk ◦ µ∗i

and
µ∗i ◦ ῑk,i = ιk ◦ µ∗i .

Using the above identities and Proposition 7.3 we obtain

Iσ ◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0 ισi+1

)
◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0

(
ισi+1 ◦ µ∗i+1

))
=
(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0

(
µ∗i+1 ◦ ῑσi+1,i+1

))
=
(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0µ

∗
i+1

)
◦
(
×p−1
i=0 ῑσi+1,i+1

)
=
(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0µ

∗
i

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=
(
×p−1
i=0 (πσi ◦ µ∗i )

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=
(
×p−1
i=0 (µ∗i ◦ π̄σi,i)

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=
(
×p−1
i=0µ

∗
i

)
◦
(
×p−1
i=0 π̄σi,i

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
.

Note that ×p−1
i=0 π̄σi,i is the projection of H∗(P̄ ) onto H∗(R), and ×p−1

i=0 ῑσi+1,i+1 is the inclusion
of H∗(R) into H∗(P̄ ). Hence, applying Proposition 6.8 we get (24).

We shall prove that

(25) Ipσ ◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0µ

∗
i+1

)
◦ Ip

f̄R
.

Note that f̄R ◦ l = l ◦ f̄R. Hence, (l∗)−1 ◦ f̄∗R = f̄∗R ◦ (l∗)−1. Similarly, (l∗)−1 ◦ (i∗R)−1 =
(i∗R)−1 ◦ (l∗)−1, as iR ◦ l = l ◦ iR. We have

(l∗)−1 ◦ If̄R = (l∗)−1 ◦ f̄∗R ◦ (i∗R)−1

= f̄∗R ◦ (l∗)−1 ◦ (i∗R)−1

= f̄∗R ◦ (i∗R)−1 ◦ (l∗)−1

= If̄R ◦ (l∗)−1.

Therefore, using (24) and (21), we obtain

Ipσ ◦
(
×p−1
i=0µ

∗
i+1

)
= Ip−1

σ ◦
(
×p−1
i=0µ

∗
i

)
◦ If̄R

= Ip−1
σ ◦

(
×p−1
i=0µ

∗
i+1

)
◦ (l∗)−1 ◦ If̄R

= Ip−1
σ ◦

(
×p−1
i=0µ

∗
i+1

)
◦ If̄R ◦ (l∗)−1.

Now, by the reverse induction with respect to p and the fact that
(
(l∗)−1

)p
is the identity, we

get (25). This shows that Ip
f̄R

and Ipσ are conjugate, and completes the proof.
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We are ready to present the main theorems of this section. They show that from the index
map for f , itself, we can extract information which is sufficient to justify the existence of an
orbit of f , passing through the components of N in a given order.

Theorem 7.5. Assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint compact subsets of

N , N is an isolating neighborhood with respect to f , and P is a weak index pair for f in N . Let
p ∈ N and let σ := (σ0, . . . , σp−1) ∈ IZp

n . If the endomorphism Iσ given by (22) is not nilpotent

then there exists a trajectory τ : Z → Inv(
⋃p−1
i=0 Nσi , f) for f , such that τ(i + kp) ∈ Nσi, for

i ∈ Ip, k ∈ Z.

Proof. By Proposition 7.4, Sσ = Inv(Nσ, f̄) is an isolated invariant set for f̄ . Thus, we
have a well-defined Conley index C(Sσ, f̄) for Sσ and f̄ . Note that, by Proposition 7.4, there
exists a weak index pair R in X̄ for f̄ and Sσ, such that If̄R and Iσ satisfy (24). Since Iσ is
not nilpotent, then so is If̄R . Consequently, C(Sσ, f̄) 6= 0. By the Ważewski property of the
Conley index (cf. [25, Proposition 2.10]), it follows that Sσ 6= ∅. According to definition (17)
of f̄ , there exists an x ∈ Nσ0 such that (x, 0) ∈ Sσ. Let η : Z → Sσ be a trajectory for f̄ in
Sσ through (x, 0). One easily verifies that then τ := p ◦ η, where p : X̄ 3 (x, i) 7→ x ∈ X is
the projection, is a trajectory for f satisfying the assertion.

For a given i ∈ In define endomorphism gi : H∗(P )→ H∗(P ) by

(26) gi := IfP ◦ ιi ◦ πi.

We are going to prove the following theorem which may be viewed as a counterpart of Theo-
rem 7.5 expressed in terms of compositions of endomorphisms gi.

Theorem 7.6. Assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint compact subsets

of N , N is an isolating neighborhood with respect to f , and P is a weak index pair for f
in N . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈ IZp

n and let endomorphisms gi be given by (26).
If the composition gσ0 ◦ · · · ◦ gσp−1 is not nilpotent then there exists a trajectory τ : Z →
Inv(

⋃p−1
i=0 Nσi , f) for f , such that τ(i+ kp) ∈ Nσi, for i ∈ Ip, k ∈ Z.

For its proof we need an auxiliary lemma. Consider the projections

ri :
p−1

×
i=0

H∗(P σi)→ H∗(P i)

and the inclusions

mi : H∗(P i)→
p−1

×
i=0

H∗(P σi).

Let hi :×p−1
i=0 H

∗(P σi)→×p−1
i=0 H

∗(P σi) be given by

(27) hi := Iσ ◦mi ◦ ri.

Let Perm(Zp) and Cycle(Zp) ⊂ Perm(Zp) stand for the sets of all permutations and all cyclic
translations of Zp, respectively.
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Lemma 7.7. Assume Iσ, gi, and hi are given by (22), (26), and (27), respectively. Then
(i) Ipσ = Σs∈Cycle(Zp)(hσs(0)

◦ · · · ◦ hσs(p−1)
);

(ii) hσ0 ◦ · · · ◦ hσp−1 = mσp−1 ◦ πσp−1 ◦ gσ0 ◦ · · · ◦ gσp−1 ◦ ισp−1 ◦ rσp−1.

Proof. One can observe that

(28) Iσ = Σp−1
i=0hσi .

Since hσj ◦ hσi = 0 whenever i− j 6= 1, i, j ∈ Zp, by (28) we have

Ipσ = Σs∈Perm(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)
= Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)
,

which completes the proof of (i).
For the proof of (ii) first observe that, according to the definitions (22) and (26) of Iσ and

gi, respectively, we have the following representation of endomorphisms hi given by (27):

(29) hσi+1 = mσi ◦ πσi ◦ gσi+1 ◦ ισi+1 ◦ rσi+1 .

It is straightforward to see that, for each i ∈ In, we have

(30) gσi ◦ ισi ◦ rσi ◦mσi ◦ πσi = gσi .

Therefore, using (29), we obtain

hσ0 ◦ · · · ◦ hσp−1 = mσp−1 ◦ πσp−1 ◦ gσ0 ◦ · · · ◦ gσp−1 ◦ ισp−1 ◦ rσp−1 .

This completes the proof.

Proof of Theorem 7.6. According to Theorem 7.5 it suffices to show that Ipσ is not nilpo-
tent. For contradiction suppose that Ipσ is nilpotent and consider k ∈ N such that Ikpσ = 0.
Note that, by Lemma 7.7 and the fact that hσj ◦hσi = 0 for i− j 6= 1, i, j ∈ Zp, it follows that

Ikpσ =
(

Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

))k
= Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)k
.

Hence, according to definition (27) of hi, for each s ∈ Cycle(Zp) we have

(hσs(0)
◦ · · · ◦ hσs(p−1)

)k = 0.

In particular, (hσ0 ◦ · · · ◦ hσp−1)k = 0. Consequently, by Lemma 7.7(ii) and (30), we obtain

mσp−1 ◦ πσp−1 ◦ (gσ0 ◦ · · · ◦ gσp−1)k ◦ ισp−1 ◦ rσp−1 = 0,

which implies (gσ0 ◦ · · · ◦ gσp−1)k = 0, a contradiction. This completes the proof.
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8. Determining periodic orbits via Lefschetz-type fixed point theorem. We will con-
tinue to deal with determining orbits passing through the disjoint components of an isolating
neighborhood in a prescribed fashion. Now we focus our attention on periodic orbits.

Throughout this section we use the notation introduced in the preceding section.
Let ϕ = {ϕi} be an endomorphism of degree zero of a graded vector space V = {Vi}.

Recall that ϕ is called a Leray endomorphism provided the quotient space V ′ := V/N(ϕ),
where N(ϕ) :=

⋃
{ϕ−n(0) | n = 1, 2, . . . }, is of a finite type. For such a ϕ we define its

trace as a trace of an induced endomorphism ϕ′ : V ′ → V ′, i.e., tr(ϕ) := tr(ϕ′), and the
(generalized) Lefschetz number, by

Λ(ϕ) :=
∞∑
i=0

(−1)i tr(ϕi).

It is worth mentioning the case of endomorphisms ϕ,ψ of graded vector spaces V and W ,
respectively, such that ϕ = hg and ψ = gh for some morphisms g : V →W and h : W → V . If
one of such endomorphisms is a Leray endomorphism then so is the other, and Λ(ϕk) = Λ(ψk)
for all k ∈ N (cf. [13], [26, Proposition 2]). It applies, in particular, if ϕ and ψ are conjugate,
that is, there exists an isomorphism g : V →W such that gϕ = ψg.

The following proposition shows that the Lefschetz number of an index map is independent
of the choice of a weak index pair.

Proposition 8.1. Let S be an isolated invariant set for f and let P and R be arbitrary weak
index pairs for f and S. Then, for every k ∈ N, if Λ(IkfP ) is well defined, then so is Λ(IkfR)
and we have

(31) Λ(IkfP ) = Λ(IkfR).

Proof. By [2, Theorem 6.4] and its proof it follows that there exists a sequence IfP =
I1, I2, . . . , Ik = IfR of endomorphisms, with the property that each two consecutive endo-
morphisms, Ii and Ii+1, are linked in the sense of [26, Proposition 2]. Hence, the assertion
follows.

Proposition 8.2. For any weak index pair Q for f̄p and Sσ given by (23), if Λ(If̄pQ
) is well

defined then so is Λ(Ipσ) and we have

Λ(If̄pQ
) = Λ(Ipσ).

Proof. By Proposition 6.4, Sσ is an isolated invariant set with respect to both f̄ and
f̄p. Moreover, according to Proposition 6.5, we can take a pair P ′, which is a weak index
pair for each f̄k, k ∈ Ip, and Sσ, and satisfies all the assumptions of Proposition 6.6. Then
Proposition 6.6 implies that

(32) Λ(If̄p
P ′

) = Λ(Ip
f̄P ′

).

Since Q is a weak index pair for f̄p and Sσ, and so is P ′, by Proposition 8.1, we get

(33) Λ(If̄pQ
) = Λ(If̄p

P ′
).
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According to Proposition 7.4 we can take a weak index pair R for f̄ and Sσ, such that Ipσ and
Ip
f̄R

are conjugate; hence,

(34) Λ(Ip
f̄R

) = Λ(Ipσ).

Note that both P ′ and R are weak index pairs for f̄ and Sσ. Therefore, applying Proposi-
tion 8.1 once again, we have

(35) Λ(Ip
f̄P ′

) = Λ(Ip
f̄R

).

Now, the assertion follows from (33), (32), (35), and (34).

Note that f̄p maps X × {i} ⊂ X̄ into itself, for any i ∈ Ip. Therefore, the following
proposition is straightforward.

Proposition 8.3. Assume that, for a given i ∈ Ip, K × {i} ⊂ X̄ is an isolated invariant
set for f̄p in its isolating neighborhood M × {i}. Then K is an isolated invariant set for fp,
isolated by M .

Proposition 8.4. Let f : Rd → Rd be a discrete dynamical system. Set Rd := Rd × Ip and

consider the dynamical system f̄ on Rd given by (17). Assume that K :=
⋃p−1
i=0 (Kσi×{i}) ⊂ Rd

is an isolated invariant set with respect to f̄p, and M :=
⋃p−1
i=0 (Mσi × {i}) is its isolating

neighborhood. Then, there exists a weak index pair Q for f̄p and K consisting of compact
ANR’s (for the definition of an ANR we refer to [5]).

Proof. Fix an arbitrary i ∈ Ip. First note that Kσi ×{i} = Inv(Mσi ×{i}, f̄p), as f̄p maps
Rd × {i} into itself. As a consequence, Mσi × {i} is an isolating neighborhood of Kσi × {i}
with respect to f̄p. By Proposition 8.3, Kσi is an isolated invariant set with respect to fp, and
Mσi is its isolating neighborhood. Using [35, Lemma 5.1] we can take a polyhedral index pair
Qσi for fp and Kσi . By [24, Theorem 4.4], Qσi is a weak index pair. Then the pair Qσi × {i}
consists of compact ANRs, and constitutes a weak index pair for f̄p and Kσi × {i}. One can
verify that the union Q :=

⋃p−1
i=0 Q

σi × {i} is a weak index pair with respect to f̄p and K.
Moreover, Q1 and Q2 are ANRs, as pairwise disjoint unions of ANRs.

Theorem 8.5. Let f : Rd → Rd be a discrete dynamical system. Assume that N =
⋃n
i=1Ni,

where Ni are pairwise disjoint compact subsets of N , is an isolating neighborhood with respect
to f , and P is a weak index pair for f in N . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈ IZp

n , and let

endomorphism Iσ of×p−1
i=0 H

∗(P σi) be given by (22). If

(36) Λ(Ipσ) 6= 0

then there exists a p-periodic point x ∈ Nσ0 for f such that f i+kp(x) ∈ Nσi for k ∈ Z.

Proof. Consider the space Rd := Rd × Ip, and the dynamical system f̄ on Rd, given by
(17). By Proposition 8.2 we infer that Sσ is an isolated invariant set with respect to f̄p. Thus,
according to Proposition 8.4, we can take Q, a weak index pair for f̄p and Sσ, consisting of
compact ANRs. Then, by Proposition 8.2, Λ(If̄pQ

) is well defined and we have Λ(If̄pQ
) = Λ(Ipσ)

which, along with (36), yields
Λ(If̄pQ

) 6= 0.
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Note that any weak index pair is a proper pair in the sense of [33, Defnition 4]. Therefore,
by [33, Theorem 9], there exists an x̄ ∈ cl(Q1 \ Q2) such that f̄pQ(x̄) = x̄. Without loss of
generality we may assume that x̄ = (x, 0) ∈ Nσ0 × {0}. Then, x ∈ Nσ0 is a p-periodic point
for f . Clearly {f̄k(x̄) | k ∈ Z} ⊂ Sσ; hence, {fk(x) | k ∈ Z} ⊂ Inv(

⋃p−1
i=0 Nσi , f). Moreover,

definition (17) of f̄ guarantees that the p-periodic trajectory of f through x passes through
the components of Inv(

⋃p−1
i=0 Nσi , f) in a proper order.

We shall express the Lefschetz number of Ipσ in terms of the Lefschetz number of a com-
position of endomorphisms gi given by (26). Our goal is to prove the following theorem.

Theorem 8.6. Let f : Rd → Rd be a discrete dynamical system. Assume that N =
⋃n
i=1Ni,

where Ni are pairwise disjoint compact subsets of N , is an isolating neighborhood with respect
to f . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈ IZp

n , and let P be a weak index pair for f in N .
Consider endomorphisms gi : H∗(P )→ H∗(P ) given by (26). If

(37) Λ(gσ0 ◦ · · · ◦ gσp−1) 6= 0

then there exists a p-periodic point x ∈ Nσ0 for f such that f i+kp(x) ∈ Nσi for k ∈ Z.

For the proof we need an auxiliary lemma.

Lemma 8.7. Assume Iσ, gi, and hi are given by (22), (26), and (27), respectively. Then
(i) if Λ(h0 ◦ · · · ◦ hp−1) is well defined then so is Λ(Ipσ), and

Λ(Ipσ) = pΛ(hσ0 ◦ · · · ◦ hσp−1);

(ii) if Λ(gσ0 ◦ · · · ◦ gσp−1) is well defined then so is Λ(Ipσ) and we have

Λ(Ipσ) = pΛ(gσ0 ◦ · · · ◦ gσp−1).

Proof. Note that Ipσ and hp−1 ◦ · · · ◦ h0 are endomorphisms of graded modules, however,
we consciously skip denoting the dimension in order to simplify the notation. Observe that,
by Lemma 7.7(i) and the cyclic property of the trace, in each dimension we have the equality

(38) tr(Ipσ) = p tr(hσ0 ◦ · · · ◦ hσp−1).

This completes the proof of (i).
For the proof of (ii) it suffices to verify that, in each dimension, we have

tr(Ipσ) = p tr(gσ0 ◦ · · · ◦ gσp−1).

Using Lemma 7.7(ii), by the cyclic property of the trace, and (30), we can write

tr(hσ0 ◦ · · · ◦ hσp−1) = tr(mσp−1 ◦ πσp−1 ◦ (gσ0 ◦ · · · ◦ gσp−1) ◦ ισp−1 ◦ rσp−1)

= tr((gσ0 ◦ · · · ◦ gσp−1) ◦ ισp−1 ◦ rσp−1 ◦mσp−1 ◦ πσp−1)

= tr(gσ0 ◦ · · · ◦ gσp−1).

Now, the assertion follows from (i).

Proof of Theorem 8.6. The theorem follows from Theorem 8.5 and Lemma 8.7.
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9. Semiconjugacies to shift dynamics. Given a matrix A ∈ {0, 1}In×In we say that a
partial map s : Z9In is A-admissible if A(si, si+1) = 1 for any i, i+ 1 ∈ dom s.

Assume V is a finite-dimensional graded vector space over the field of rational numbers.
Let Vi ⊂ V for i ∈ In be subspaces of V such that V = ⊕ni=1Vi is a direct sum decomposition
of V and let

pi : V 3 x = (x1, x2, . . . xn) 7−→ (0, 0, . . . 0, xi, 0 . . . , 0) ∈ Vi

denote the canonical projections.
Consider a linear map L : V → V . We define the transition matrix of L with respect to

the decomposition V = ⊕ni=1Vi as the matrix A ∈ {0, 1}In×In such that A(i, j) = 1 if and only
if pj ◦ L ◦ pi 6= 0. We say that L is Lefschetz-complete if

Λ(L ◦ ps1 ◦ L ◦ ps2 ◦ · · · ◦ L ◦ psk) 6= 0

for any sequence s : Ik → Ip admissible with respect to the transition matrix of L.
Let Σn := { s : Z→ In } be the space of bi-infinite sequences of elements in In with

product topology and for a matrix A ∈ {0, 1}In×In let ΣA denote the subspace of A-admissible
sequences. It is easy to see that the shift map σ : Σn → Σn defined by σ(s)i := si+1 is a
homeomorphism and σ(ΣA) ⊂ ΣA. Hence, σ is a generator of a dynamical system on ΣA.

Theorem 9.1. Assume N is an isolating neighborhood with respect to f : Rd → Rd, and
P is a weak index pair for f in N . Moreover, assume N =

⋃n
i=1Ni, where Ni are pairwise

disjoint compact subsets of N , and the index map IfP : H∗(P )→ H∗(P ) is Lefschetz-complete
with respect to the decomposition N =

⋃n
i=1Ni. Then there exists a semiconjugacy ρ between

S := Inv(
⋃n
i=1Ni, f) and the shift dynamics σ on ΣA, where A is a transition matrix of IfP .

Moreover, for each periodic s ∈ ΣA there exists a periodic point of f in ρ−1(s).

Proof. Fix an arbitrary x ∈ S. Since the sets Ni are pairwise disjoint and S =
Inv(

⋃n
i=1Ni, f), for each k ∈ Z there exists a unique i ∈ In with fk(x) ∈ Ni. By putting

ρ(x)k := i we define a continuous map ρ : S → Σn. Note that, in fact, ρ maps S into ΣA, as
ΣA is the subspace of Σn of all sequences admissible with respect to the transition matrix of
IfP .

We shall prove that ρ is a surjection onto ΣA. To this end let s ∈ ΣA be fixed. For an
arbitrary k ∈ N let sk denote the restriction of s to the domain {−k,−k + 1, . . . , k − 1, k}.
Since IfP is Lefschetz-complete, we have

Λ(IfP ◦ ps−k
◦ · · · ◦ IfP ◦ ps0 ◦ · · · ◦ IfP ◦ psk) 6= 0.

By the cyclic property of the trace we obtain

Λ(IfP ◦ psk ◦ IfP ◦ ps−k
◦ · · · ◦ IfP ◦ ps0 ◦ · · · ◦ IfP ◦ psk−1

) 6= 0,

showing that psk ◦ IfP ◦ ps−k
6= 0; hence, (s−k, sk) is A-admissible. As a consequence, the

periodic sequence s̃k : Z→ In, given by s̃km := sk(m+k) mod (2k+1)−k form ∈ Z, is A-admissible.

By Theorem 8.6, there exists xk ∈ S such that ρ(xk) = s̃k. Since k ∈ N was arbitrarily fixed,

we have constructed a pair of sequences: {s̃k} ∈ ΣN
A convergent to s, and {xk} ∈ SN, such
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that ρ(xk) = s̃k for k ∈ N. By compactness of S, passing to a subsequence, if necessary, we
may assume that {xk} converges to x ∈ S. Then, by the continuity of ρ we have ρ(x) = s.

The commutativity of the diagram

S S

ΣA ΣA

ρ

f

ρ

σ

is easily readable.
The above shows that ρ constitutes a semiconjugacy from f to the shift dynamics σ on

ΣA.
The last statement of the theorem is a direct consequence of Theorem 8.6.

Theorem 9.1 has its counterpart in terms of endomorphisms gi given by (26).

Theorem 9.2. Assume N is an isolating neighborhood with respect to f : Rd → Rd, and
P is a weak index pair for f in N . Moreover, assume N =

⋃n
i=1Ni, where Ni are pairwise

disjoint compact subsets of N , and for each sequence s : Ik → Ip admissible with respect to
the transition matrix A of the index map IfP : H∗(P )→ H∗(P ) the composition gs1 ◦ · · · ◦ gsk
is not nilpotent. Then there exists a semiconjugacy ρ between S := Inv(

⋃n
i=1Ni, f) and the

shift dynamics σ on ΣA.

Proof. The proof runs along the lines of the proof of Theorem 9.1. Therefore, the details
are left to the reader. However, it is worth mentioning that now the admissibility of the
periodic sequence s̃k : Z → In constructed in the proof of Theorem 9.1 follows from the fact
that the composition gs−k

◦ · · · ◦ gs0 ◦ · · · ◦ gsk is not nilpotent. Moreover, the existence of the
corresponding sequence {xk} ∈ SN is guaranteed by Theorem 7.6.

10. Proofs of the main theorems.

10.1. Proof of Theorem 1.3. Clearly, F is a cubical map. Its upper semicontinuity
follows from [14, Proposition 14.5]. Using elementary collapses (cf. [18]) we verify that F has
contractible values.

Using algorithms developed in [36], a formula from [1, Theorem 4.4], and techniques as
in [31], we find a cubical isolating block N for F consisting of five pairwise disjoint compact
components N1, . . . , N5, a cubical weak index pair P in N , and index map IFP

(cf. Figure 1.3).
Direct computations show that H1(P1, P2) ∼= Z5 and Hq(P1, P2) = 0 for q 6= 1. More precisely,
let ξ1, . . . , ξ5 be the generators of the cohomology group H1(P ) such that H1(P i1, P

i
2) = 〈ξi〉,

where P i := P∩Ni, for i = 1, . . . , 5. Then, using generators ξ1, . . . , ξ5 as a basis, computations
based on algorithms of [22] provide the following matrix representation of the index map:

I1
FP

=


0 0 0 −1 0
0 0 0 0 −1
1 1 0 0 0
0 0 1 0 0
0 0 −1 0 0

 .
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By Theorem 5.13 we infer that there exists an ε-approximation of F , and each ε-approx-
imation of F shares with F an isolating neighborhood and, up to a conjugacy, an index map.

Property (ii) is a straightforward consequence of Theorem 8.6 under the assumption that
the transition matrix A of IFP

is irreducible (cf. [18, Definition 10.22, Proposition 10.25]) and,
for any A-admissible periodic sequence σ, condition (37) holds. We verify this assumption by
algorithmic computations. Details are presented in [32].

Finally, using the transition matrix A we compute that the topological entropy of f is
greater than ln 1.2599.

10.2. Proof of Theorem 1.2. The proof runs along the lines of the proof of Theorem 1.3.
Computations result in a cubical isolating block N for F which decomposes into six disjoint
compact components N1, . . . , N6, and a cubical weak index pair P in N with H1(P1, P2) ∼= Z7

and Hq(P1, P2) = 0 for q 6= 1. Let P i := P ∩ Ni for i = 1, . . . , 6 (cf. Figure 1.2). Then,
H1(P 1

1 , P
1
2 ) has two generators, and each H1(P i1, P

i
2), for i 6= 1, has exactly one generator:

H1(P i1, P
i
2) =

{
〈ξ1

1 , ξ
1
2〉 if i = 1,

〈ξi〉 if i = 2, . . . , 6.

With generators ξ1
1 , ξ

1
2 , ξ

2 . . . , ξ6 as a basis we have the following matrix representation of the
index map

I1
FP

=



0 0 0 0 0 0 −1
0 0 0 0 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 1 −1 0 0 0


.

The topological entropy of ε-approximation f is greater than ln 1.151.

10.3. Proof of Theorem 1.4. The proof again goes along the lines of the proof of Theo-
rem 1.3. We identify an isolating block N = N1∪N2 with N1∩N2 = ∅, and a weak index pair
P in N . We find that H1(P1, P2) ∼= Z2 and Hq(P1, P2) = 0 for q 6= 1. More precisely, if ξ1, ξ2

are the generators of H1(P1, P2), and let P i := P ∩ Ni then H1(P i1, P
i
2) = 〈ξi〉 for i = 1, 2.

With the generators as a basis we have the matrix representation of the index map

I1
FP

=

(
0 −1
1 0

)
.

Finally, by Theorem 8.6, we obtain the existence of a 2-periodic point in N .
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