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We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological

computational tools. The framework is aimed at automatic computation of a database of global

dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of

the n-dimensional phase space. We introduce the mathematical background, which is based upon

Conley’s topological approach to dynamics, describe the algorithms for the analysis of the dynamics

using rectangular grids both in phase space and parameter space, and show two sample applications.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767672]

It is well established that multiparameter nonlinear

dynamical systems exhibit extremely complex behavior.

For many applications, especially multiscale problems or

in settings in which precise measurements are difficult, an

understanding of coarse but robust structures that exist

over large ranges of parameter values is of greater impor-

tance than a detailed understanding of the fine structure.

With this in mind, we discuss a new mathematical and

computational framework for the analysis of the global

dynamics of multiparameter nonlinear systems. Our

approach is based on a finite combinatorial approximation

of phase space, parameter space, and the nonlinear dy-

namics. This is used to obtain a description of the global

dynamics in terms of acyclic directed graphs called Morse

graphs. A rigorous understanding of the dynamics is

obtained using the Conley index, an algebraic topological

invariant. The resulting information is finite and presented

in the form of graphs and algebraic invariants and thus

can be easily queried. For this reason, we view our proce-

dure as producing a database for the global nonlinear dy-

namics for a parameterized nonlinear system. We include

a discussion concerning the computational complexity of

our approach along with two simple illustrative examples.

I. INTRODUCTION

Physical models of evolutionary processes are typically

framed in terms of continuous state spaces, parameter

spaces, and time. Understanding the existence, structure, and

bifurcation of invariant sets often forms the focal point for

the qualitative study of these systems. However, the theoreti-

cal work of the last century makes clear that invariant sets

can possess structure on all spatial and temporal scales and

furthermore that these structures can vary dramatically over

parameter sets, which can be as complicated as Cantor sets

of positive measure.

These results need to be contrasted with available meth-

ods of analysis, the ability to make measurements, and the

derivation of models. In the context of applications, the focus

is often on understanding the dynamics of a particular para-

meterized family of nonlinear systems. Because of the nonli-

nearity, typically this analysis is heavily dependent on

performing and interpreting numerical simulations. Further-

more, these results are often compared against experimental

data which itself is limited to finite measurements that

contain errors and are of limited precision. Finally, many

mathematical models, especially those arising from multi-

scale systems, are heuristic in nature; that is, the nonlinear-

ities are not derived from first principle, but rather through a

series of approximations. This implies that the exact values

produced by the model at particular parameter values cannot

be expected to and are not intended to exactly match those of

the physical system. In addition, there are many instances of

models for which crucial parameter values are unknown with

bounds that range over many orders of magnitude.

This gap between the potentially infinite complexity of

invariant sets and the crude tools of analysis and measure-

ment suggests that an alternative perspective in describing

the global properties of multiparameter families of nonlinear

dynamical systems may be of use. In this paper, we provide

a review of our attempts to develop such a new perspective

with a focus on the computational aspects of the approach.

To keep technicalities to a minimum, we consider a

multiparameter dynamical system given in the form of a con-

tinuous map,
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f : Rn �Rm ! Rn;

ðx; zÞ 7! fzðxÞ :¼ f ðx; zÞ; (1)

where Rn is the phase space and Rm is the parameter space.

However, it should be noted that this is not a serious restric-

tion. Techniques that are analogous to those described in this

paper have been successfully employed to study the dynam-

ics of ordinary differential equations,21 partial differential

equations,6 infinite dimensional maps,5 fast-slow systems,9

and time series analysis.19 Let X � Rn be a compact subset

of phase space that contains the dynamics of interest and let

Z � Rm be a compact subset of parameter space, which con-

tains the set of physically relevant parameters. Our goal is to

provide a mathematically rigorous description of the global

dynamics restricted to X for all parameter values in Z.

Recall that for a given parameter value z 2 Z; Sz � X
is an invariant set under fz if fz(Sz)¼ Sz. Traditionally, invari-

ant sets are the focal point for dynamical systems. In the

approach we present here, they play a secondary role.

Instead, we focus on isolating neighborhoods; these are com-

pact sets N � X such that

InvðN; fzÞ � intðNÞ;

where InvðN; fzÞ denotes the maximal invariant set contained

in N and intðNÞ denotes the interior of N. Simple arguments

based on continuity show that if N is an isolating neighbor-

hood for fz, then it is an isolating neighborhood for fz0 for all

z0 sufficiently close to z. An invariant set that is the maximal

invariant set in an isolating neighborhood is called an iso-
lated invariant set. Given an isolating neighborhood, infor-

mation about the isolated invariant set can be extracted using

the Conley index, which is discussed in greater detail in

Secs. II C and II D. For the moment, it is sufficient to make

three remarks.

N1 One can associate a Conley index to any isolating

neighborhood.

N2 If N and N0 are isolating neighborhoods and InvðN; fzÞ
¼ InvðN0; fzÞ, then they have the same Conley index.

N3 If N is an isolating neighborhood for all z in a path con-

nected subset of Z, then the Conley index associated with N
is the same for all fz.

For justification of these remarks and further informa-

tion about the Conley index, see Ref. 20. The theme of this

work is that isolating neighborhoods are relatively easy to

identify, their Conley indices can be computed, and thus we

can obtain information about isolated invariant sets. N2 sug-

gests that this information is relatively insensitive to the nu-

merical approximations used to identify the isolating

neighborhood. Furthermore, N3 implies that the dynamical

information extracted using the Conley index is robust with

respect to perturbations in parameter values.

II. MATHEMATICAL FRAMEWORK

Because we are interested in structures which are invari-

ant with respect to perturbations in parameter space, it is

convenient to consider the parameterized dynamical system,

F : Rn �Rm ! Rn �Rm;

ðx; zÞ 7! fzðxÞ; zð Þ: (2)

Given Z � Rm, we denote the restriction of F to Rm � Z by

FZ : Rn � Z ! Rn � Z.

A. Approximating dynamics

We can only perform a finite number of calculations,

thus we need to combinatorialize phase space, parameter

space, and the map that generates the dynamics. The discreti-

zation of phase space and parameter space is done using the

concept of a grid.24 This consists of a finite collection X of

nonempty, compact subsets of X with the following

properties:

(a) X ¼ [n2Xn;

(b) n ¼ clðintðnÞÞ for all n 2 X ;

(c) n \ intðn0Þ ¼ Ø for all n 6¼ n0.

The diameter of a grid X is defined by

diamðXÞ ¼ sup
n2X

diamðnÞ:

As shown in Ref. 15, any compact metric space admits a

grid of arbitrarily small diameter. For A � X , the set

[n2An � X is denoted by jAj.
For the sake of simplicity, in this paper, we only con-

sider grids with grid elements in the form of cubes or simpli-

ces. With this in mind, we restrict the regions of phase space

X � Rn and parameter space Z � Rm to be sets that can be

represented by cubical or simplicial grids X and Z,

respectively.

To discretize the dynamics, we make use of a combina-
torial multivalued map F : X¶X which assigns to each

element of a grid n 2 X a subset (possibly empty) FðnÞ of

X . With regard to the algorithms that are employed in the

analysis of the dynamics, it is important to observe that a

combinatorial multivalued map is equivalent to a finite

directed graph with vertices X and directed edges ðn; n0Þ
whenever n0 2 FðnÞ. With this in mind, we will refer to F as

a multivalued map or a directed graph, whichever is more

convenient or intuitive given the situation.

To understand the relationship between multivalued

maps and nonlinear dynamics, consider a continuous func-

tion f : Rn ! Rn and a compact subset X � Rn. Let X be a

grid for X. A combinatorial multivalued map F : X¶X is

an outer approximation of f, if

f ðnÞ � intðjFðnÞjÞ for all n 2 X : (3)

Given a grid X , the minimal outer approximation of f is

given by

~F ðnÞ :¼ fn0jn0 \ f ðnÞ 6¼ Øg

and any other outer approximation F of f satisfies ~F ðnÞ �
FðnÞ for all n 2 X .15

An important observation is the fact that if ~F is a mini-

mal outer approximation of f, then there exists d > 0 such

047508-2 Bush et al. Chaos 22, 047508 (2012)



that if jjgðxÞ � f ðxÞjj < d for all x 2 X then ~F is an outer

approximation of g. Another outer approximation F for f,
which is not minimal, will in general allow for a larger d. In

this sense, grids and outer approximations provide a robust

approximation of dynamics (Fig. 1).

From the computational perspective, determining the

minimal outer approximation is typically too expensive. In

general, the best that can be done is to compute an approxi-

mation of f ðnÞ along with an error bound e which may or

may not be small. With this information, one can construct

an outer approximation that satisfies the following condition:

fn0 2 Xjn0 \ Beðf ðnÞÞ 6¼ Øg � FðnÞ:

The focus of this paper is on parameterized dynamical sys-

tems (2) for which we have chosen grids X and Z for X and Z,

the regions of interest in phase space and parameter space,

respectively. For each f 2 Z, let F f : X¶X be an outer

approximation of Ff : Rn � f! Rn � f restricted to the grid

X � f :¼ fn� fjn 2 Xg. By definition, this implies that

f ðn; fÞ � int
�
jF fðnÞj

�
for all n 2 X :

To understand how F f acts as an approximation of the

underlying dynamics induced by Eq. (1), we state the follow-

ing proposition which follows directly from the definition of

an outer approximation.

Proposition 2.1. Let F f be an outer approximation for
Ff. Consider any x 2 n and any ordered sequence of param-
eter values ðz1; z2;…; zTÞ where fzi 2 fji ¼ 1;…; Tg. Define

xiþ1 :¼ fzi
ðxiÞ;

where x0¼ x and choose ni 2 X such that xi 2 ni. Then the
ordered sequence ðn; n1;…; nTþ1Þ is a path in the directed
graph F f.

B. Extracting nonrecurrent dynamics

Assume that the grids X ;Z are chosen and for a fixed

f 2 Z an outer approximation F f : X¶X has been com-

puted. The first step in using our approximation scheme to

understand the dynamics generated by Eq. (1) is to identify

the nonrecurrent dynamics.

Given the directed graph F f and N � X , the associated

subgraph is the directed graph F fjN : N ¶N consisting

of the vertices fn 2 Ng and edges fðn; n0Þjn; n0 2 N ;
n0 2 F fðnÞg. A directed graph is invariant if each vertex is

both the head of at least one edge and the tail of at least one

edge.

Proposition 2.2. Let Sf � X be the maximal invariant
subgraph of F f. Then,

InvðX; fzÞ � jSfj;

for all z � f.
The proof follows directly from Proposition 2.1. A con-

sequence of Proposition 2.2 is that we have identified the

portion of phase space on which the asymptotic dynamics

takes place for all parameter values z �f. The next step is to

identify the relevant dynamical structures which, likewise,

are invariant for all z �f.

Given the directed graph F f, two elements n; n0 2 X
belong to the same strongly connected path component if

there exist nontrivial paths from n to n0 and n0 to n.

Definition 2.3. Given a directed graph F f, let Pf be an

index set for the collection of all strongly connected path

components. The set

fMfðpÞ � Xjp 2 Pfg

is the Morse decomposition of F f. The individual strongly

connected path components are called Morse sets.

The following proposition summarizes basic facts about

Morse sets, Morse decompositions, and an additional order

structure on Pf. The proof follows from direct applications of

the definition of strongly connected path components,

the definition of maximal invariant subgraph, and Proposi-

tion 2.1.

Proposition 2.4. Consider an outer approximation F f :
X¶X of Ff with maximal invariant subgraph Sf. Then,

1. MfðpÞ � Sf for all p 2 Pf.

2. If p 6¼ q, thenMfðpÞ \MfðqÞ ¼ Ø

3. If n 2 Sf n [p2PfMfðpÞ, then there exist p; q 2 Pf and a

path in F f that begins in MðpÞ, passes through n, and

ends inMðqÞ. Note: If such a path exists for some p; q 2
Pf then we write q< fp.

4. If x 2 n and n 2 Sf n [p2PfMfðpÞ, then for all z �f the

point x is not a recurrent point of fz restricted to X.

5. Under the relationship� f, defined above, Pf is a partially
ordered set.

Proposition 2.5 (See Theorem 4.1 in Ref. 15). Let
fMfðpÞ � Xjp 2 Pfg be the Morse decomposition for the
outer approximation F f : X¶X of Ff. Then for all p 2 Pf,

jMfðpÞj is an isolating neighborhood for fz for all z �f.

FIG. 1. An illustration of a minimal outer approximation. Depicted is the

logistic map, f ðxÞ ¼ rxð1� xÞ, with the region between the parabolas corre-

sponding to r � [3,3.2]. For each grid element in the domain (in this case

one of the eight intervals on the x-axis), the outer approximation of the grid

element under f for the chosen values of r is the set of intervals in the range

indicated by the shaded boxes above the domain grid element. This outer

approximation is minimal because the set of shaded boxes is the fewest

required to cover the graph of f for all values of r 2 ½3; 3:2�.

047508-3 Bush et al. Chaos 22, 047508 (2012)



Recall that given a partially ordered set ðP;�Þ, we say

that q covers p if from the relation q � r � p it follows that

either q¼ r or r¼ p.

Definition 2.6. The Morse graph MGf of F f is the

acyclic directed graph with nodes consisting of the Morse

sets and directed edges MfðpÞ !MfðqÞ if and only if q
covers p in ðPf;� fÞ.

C. Identifying recurrent dynamics

For each grid element f in parameter space, the associ-

ated Morse graph MGf provides rigorous information about

the nonrecurrent dynamics and potential information about

the recurrent dynamics that is valid over all parameter values

in jfj � Z. In particular, if recurrent dynamics occurs for

some parameter value then it must occur within a region

determined by a Morse set. We now describe the Conley

index, which is an algebraic topological tool that can provide

information about the recurrent dynamics.

We begin our description with some elementary topo-

logical constructions. Recall that a pointed topological space
is a pair ðV; v0Þ where V is a topological space and v0 2 V is

a distinguished point, sometimes called the basepoint. A

continuous map g : ðV; v0Þ ! ðV; v0Þ on a pointed topologi-

cal space is a continuous map from V to V with the property

that gðv0Þ ¼ v0, i.e., the base point is a fixed point of the

map.

Consider an arbitrary continuous map g : Y ! Y defined

on a locally compact metric space and a pair of compact

subsets of Y denoted by P ¼ ðP1;P0Þ with P0 � P1. Let

ðP1=P0; ½P0�Þ denote the pointed topological space where

P1=P0 is the quotient space25 obtained by collapsing P0 to a

single point denoted by [P0]. Define gP : ðP1=P0; ½P0�Þ !
ðP1=P0; ½P0�Þ by

gPð½x�Þ ¼
gðxÞ if x; gðxÞ 2 P1 n P0

½P0� otherwise
:

�

Definition 2.7. A pair of compact sets P¼ (P1, P0) is an

index pair for g if

1. gP is continuous, and

2. clðP1nP0Þ is an isolating neighborhood under g.

The induced map gP is called an index map.

This definition of index pair and index map is due to

Robbin and Salamon.26 Using their characterization of index

pairs and the nice topology of grids the proof of the follow-

ing result, which implies that we can find index pairs associ-

ated with each of the regions that contain the potentially

recurrent dynamics, is fairly straightforward.

Proposition 2.8. Let fMfðpÞ � Xjp 2 Pfg be the Morse
decomposition for the outer approximation F f : X¶X of
Ff. Assume jSfj � intðXÞ. Let P ¼ ðP1;P0Þ be defined by

P1 :¼ F f

�
MfðpÞ

���� ��� and P0 :¼ F f

�
MfðpÞ

�
nMfðpÞ

��� ���:

Then for all z �f, P is an index pair for fz.
For the benefit of the reader who is unfamiliar with alge-

braic topology, we provide an informal description of the

purpose of the construction of the index map before complet-

ing our discussion of the Conley index. Assume that gP :
ðP1=P0; ½P0�Þ ! ðP1=P0; ½P0�Þ is an index map for the index

pair P ¼ ðP1;P0Þ. Let P̊:¼ P1 n P0. Observe that if x 2 P̊ and

gðxÞ 2 P̊, then restricted to P̊ the maps g and gP are the same.

In particular, since by definition cl(P̊) is an isolating neigh-

borhood under g, Invðcl ðP̊Þ; gÞ� int ðP̊Þ and hence Inv (P̊, g)

is equivalent to InvðP̊, gpÞ. This is the motivation for turning

our attention to studying the dynamics of gP.

The most basic question one can ask is whether

InvðclðP̊Þ; gÞ is nonempty. Let us relate this to gP :
ðP1=P0; ½P0�Þ ! ðP1=P0; ½P0�Þ. Since this is a continuous

map on a pointed topological space, gPð½P0�Þ ¼ ½P0�. Assume

Invðcl ðP̊Þ; gÞ ¼ Ø. Then for any x 2 P̊, there exists a positive

integer n such that gnðxÞ 62 P̊, which implies that gn
PðxÞ

¼ ½P0�. Compactness of clðP̊Þ then implies the existence of �n
such that gP�nðP1=P0Þ ¼ ½P0�. In words, after a sufficient

number of iterates the dynamics of gP on the quotient space

ðP1=P0; ½P0�Þ is a constant map. Observe that this argument

suggests (though does not prove) that we can reduce the

question of the existence of a nontrivial invariant set to

showing that no iterate of gP is the constant map. Algebraic

topology, in particular homology, is used to demonstrate this

last point.

In this context, homology12,14 is an assignment to any

pointed topological space, in particular, an index pair ðP1=P0;
½P0�Þ, an infinite sequence of abelian groups, HkðP1=P0; ½P0�Þ,
k ¼ 0; 1; 2;…, and to a continuous map on that space, in

particular, the associated index map gP : ðP1=P0; ½P0�Þ !
ðP1=P0; ½P0�Þ, an infinite sequence of group endomorphisms,

gP;k : HkðP1=P0; ½P0�Þ ! HkðP1=P0; ½P0�Þ; k ¼ 0; 1; 2;…

This sequence of group endomorphisms is a representative

of the Conley index (where the equivalence relation is shift

equivalence, defined later) for the isolating neighborhood

clðP̊Þ under g.

While this may appear rather formidable, a variety of

algebraic observations and constraints can be used to sim-

plify this discussion. First, because the grids being consid-

ered are made up of cubes or simplicies, only finitely many

of the homology groups are nontrivial and the nontrivial

homology groups are all finitely generated. Furthermore, one

can compute homology groups using finite fields, e.g. Z2 or

more generally Zp where p is a prime number, or rational

numbers Q. In this case, the homology groups are finite

dimensional vector spaces and the linear maps gP;k can be

represented as matrices. If the computations are done using

Q, then the nonzero eigenvalues �rk of gP,k can be used as a

representative of the Conley index.

An important observation is that given an index pair as

in Proposition 2.8, the induced map on homology of an asso-

ciated index map can be computed using F f.
11,14,22 In sum-

mary, we have used the finite multivalued approximation of

the map f to identify regions in phase space within which the

existence of recurrent dynamics is suggested and we

have transformed the problem of rigorously identifying the

existence and structure of this recurrent dynamics to an alge-

braic problem. A more formal existence statement and the
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most fundamental result associated with the Conley index is

the following (see Ref. 20 for further discussion and

references).

Theorem 2.9. Let gP;k : HkðP1=P0; ½P0�Þ ! HkðP1=P0;
½P0�Þ be induced by an index map. If for some k 2 0; 1;
2;…; gP;k is not nilpotent, then

InvðclðP1 n P0Þ; gÞ 6¼ Ø:

The power of Theorem 2.9 is that it allows one to estab-

lish the existence of nonempty invariant sets by checking a

computable algebraic invariant.

Though we make no attempt to indicate how or why, we

note that in addition to guaranteeing existence homology can

also be used to provide lower bounds on the structure of the

invariant sets. The following theorem provides a simple

example of how the Conley index can be used to extract

more detailed information about the dynamics that is robust

with respect to perturbations in parameter space.

Theorem 2.10. Let MfðpÞ be a Morse set for the outer
approximation F f : X¶X of Ff. Then,

�r0 ¼ Ø or �r0 ¼ e2pik
Tjk ¼ 0;…;T � 1

n o
for some T > 0:

In the latter case,

jMfðpÞj ¼ [
T�1

i¼0
Ni;

where fNiji ¼ 0;…; T � 1g are mutually disjoint compact
sets with the property that

FfðNiÞ � Niþ1; i ¼ 0;…; T � 1

and

FfðNT�1Þ � N0:

In particular, given any sequence of parameter values
fzjjj ¼ 0; 1; 2;…g � f, any x0 2 N0 and xjþ1 :¼ fzj

ðxjÞ, we
have

xjþ1 2 Nk; where k ¼ jþ 1 mod T:

The proof of this theorem follows from [Ref. 2, Proposi-

tion 5.8] and Proposition 2.1.

Definition 2.11. The Conley-Morse graph CMGf of F f

consists of the Morse graph MGf of F f along with the Con-

ley index associated with each Morse setMfðpÞ; p 2 Pf.

D. Classifying dynamics over parameter space

The discussion in Secs. II A and II C is restricted to the

dynamics of Ff, where f 2 Z is a single grid element in

parameter space. Since the results are valid for every f 2 Z,

this provides a rigorous description of the dynamics for

every point z 2 Z. What remains to be discussed is how the

dynamics over different grid points f; f0 2 Z are related. We

begin by defining a relationship between the Morse sets.

Definition 2.12. Let f; f0 2 Z such that f \ f0 6¼ Ø. The

clutching graph Iðf; f0Þ is the bipartite graph with vertices

Pf [ Pf0 and with edges

ðp; qÞ 2 Pf � Pf0 if and only if MfðpÞ \Mf0 ðqÞ 6¼ Ø:

Proposition 2.13. Assume there is a unique edge (p, q)

in the clutching graph Iðf; f0Þ that has either p or q as its

endpoint. Then the Conley index of jMfðpÞj under Ff is the

same as the Conley index of jMf0 ðqÞj under Ff0 .

Proof. Let z 2 f \ f0. By Proposition 2.5, jMfðpÞj and

jMf0 ðqÞj are isolating neighborhoods. Let Sz :¼
InvðjMfðpÞj; fzÞ and S0z :¼ InvðjMf0 ðqÞj; fzÞ. Observe that it

is sufficient to show that Sz ¼ S0z, since the result then fol-

lows from N2.

With this in mind, suppose Sz 6¼ S0z. Without loss of gen-

erality, we can assume that there exists x 2 Sz n S0z. This

implies that there is a grid element n 2 X such that

x 2 n 2 MfðpÞ nMf0 ðqÞ. Since x 2 Sz, n belongs to a

strongly connected path component and hence belongs to

Mf0 ðrÞ for some r 2 Pf0 where r 6¼ q. This implies that the

clutching graph Iðf; f0Þ contains the edge (p, r), contradict-

ing the uniqueness of the edges with endpoint p. w

The key step in the proof of Proposition 2.13 is N2.

Observe that the validity of N2 is not obvious. In general,

the index pairs P¼ (P1, P0) defined by

P1 :¼ F f

�
MfðpÞ

���� ��� and P0 :¼ F f

�
MfðpÞ

�
nMfðpÞ

��� ���

and P0 ¼ ðP01;P00Þ defined by

P01 :¼ F f0

�
Mf0 ðqÞ

���� ��� and P00 :¼ F f0

�
Mf0 ðqÞ

�
nMf0 ðqÞ

��� ���

will be different and hence the induced index maps,

fP;k : HkðP1=P0; ½P0�Þ ! HkðP1=P0; ½P0�Þ

and

fP0;k : HkðP01=P00; ½P00�Þ ! HkðP01=P00; ½P00�Þ

will provide different representations of the Conley index.

Thus to explain N2 requires a discussion of the equivalence

classes used to define the Conley index. This is best done in

a fairly general setting, so consider two functions,

a : V ! V and b : W ! W;

where V and W are both either finitely generated abelian

groups or finite dimensional vector spaces, and a and b are

group homomorphisms or linear maps.

Definition 2.14. The maps a and b are shift equivalent if

there exist morphisms,

r : V ! W and s : W ! V

such that

b � r ¼ r � a and s � b ¼ a � s

and a positive integer n such that

s � r ¼ an and r � s ¼ bn:
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As is shown in Ref. 8, it follows that if fP,k and fP0;k are

constructed as above, then fP,k and fP0;k are shift equivalent.

More generally, when we indicate that two Conley indices

agree, then we mean that the representative index maps are

shift equivalent.

Proposition 2.13 motivates the following definition.

Definition 2.15. Fix grids X and Z and outer approxima-

tions F f : X¶X for all f 2 Z. Two Morse sets MfðpÞ and

Mf0 ðp0Þ belong to the same Morse continuation class, if there

exists a sequence of grid elements ffiji ¼ 0;…; Ig with f0 ¼
f; fI ¼ f0 and indexing elements fpi 2 Pfi

ji ¼ 0;…; Ig with

p0 ¼ p; pI ¼ p0 such that for all i ¼ 0;…; I � 1, there exists

a unique edge ðpi; piþ1Þ in the clutching graph Iðfi; fiþ1Þ that

has either pi or piþ1 as its endpoint.

N3 combined with Proposition 2.13 leads to the follow-

ing result.

Corollary 2.16. Let MfðpÞ and Mf0 ðp0Þ belong to the
same continuation class. Let z 2 f and z0 2 f0. Then the Con-
ley index of jMfðpÞj under fz is the same as the Conley index
of jMf0 ðp0Þj under fz0 .

Remark 2.17. It is possible that MfðpÞ and

MfðqÞ; q; p 2 Pf, belong to the same continuation class

even if p 6¼ q. For example, consider a bistable system in the

plane with one isolated stable equilibrium at (1, 0) and the

other at (�1, 0). If we take h 2 S1 to be a parameter that

merely rotates the system by h=2, then for sufficiently fine

grids in parameter and phase space the two equilibria will lie

in the same Morse continuation class. The intuitive picture is

that by starting at (1, 0) and following the equilibrium as h
moves around S1 one ends up at (�1, 0). Insofar as the dis-

cretization accurately reflects this continuous picture of the

dynamics, then there will be continuation between the Morse

sets containing each of the equilibria.

Extending the idea of continuation classes to Morse

graphs is slightly more subtle.2 Assume that the clutching

graph Iðf; f0Þ has the property that each node is the endpoint

of exactly one edge. This defines a bijection,

bf;f0 : Pf ! Pf0

p 7! q (4)

if (p, q) is an edge of Iðf; f0Þ.
Definition 2.18. Fix grids X and Z and outer approxima-

tions F f : X¶X for all f 2 Z. Two Conley-Morse graphs

CMGf and CMGf0 belong to the same Conley-Morse graph
continuation class if there exists a sequence of grid elements

ffiji ¼ 0;…; Ig with f0 ¼ f; fI ¼ f0 and indexing elements

fpi 2 Pfi
ji ¼ 0;…; Ig with p0 ¼ p; pI ¼ p0 such that for all

i ¼ 0;…; I � 1 the bijection,

bfi;fiþ1
: ðPfi

;�fi
Þ ! ðPfiþ1

;�fiþ1
Þ

is a directed graph isomorphism.

Remark 2.19. To each Conley-Morse graph continuation

class, we associate three distinct types of information:

• The Morse graph, which provides information about the

structure of the non-recurrent dynamics. More precisely, the

partial order obtained from the Morse graph by taking the

transitive closure constrains the non-recurrent dynamics. In

particular, for every trajectory with a-limit set and x-limit

set lying in distinct Morse sets, the Morse set containing the

a-limit set must be greater than the Morse set containing the

x-limit set in the partial order. In this way, the Morse graph

can be understood as giving a schematic picture of the dy-

namics in phase space away from any recurrent dynamics.
• The Conley indices of the Morse sets, which provide in-

formation about the structure of the recurrent dynamics.
• The set of parameter grid elements whose Conley-Morse

graphs belong to the Conley-Morse continuation class.

One can understand continuation classes as identifying the

region in parameter space where the identified recurrent

and non-recurrent dynamics occurs at the scale of the

computation. In particular, this provides a lower bound on

the set of parameter values at which the dynamics must

occur. We use the number of parameter grid elements to

measure the size of the continuation class.

Remark 2.20. The information about the dynamics pro-

vided by our approach can be viewed as a database of dy-

namics for the multiparameter nonlinear dynamical system

(1) restricted to the region of phase space X � Rn and pa-

rameter space Z � Rm, where the minimal levels of resolu-

tion are determined by the diameters of the grids X and Z.

In particular, we can construct the continuation graph; that

is, a graph whose nodes consist of the Conley-Morse graph

continuation classes and whose edges consist of the clutch-

ing graph information between representative Conley-Morse

graphs. This type of information is exhibited in Figure 2 for

the overcompensatory Leslie model,30

x
y

� �
7! xðh1xþ h2yÞe�0:1ðxþyÞ

0:7x

� �
: (5)

To limit the information to a comprehensible amount, the

upper left corner indicates the continuation graph associated

with the 26 largest Conley-Morse graph continuation classes.

E. Grid refinements, bifurcations, and structural
stability

The extent to which computations can resolve dynamics

at fine scales is affected by a variety of factors, including the

method for construction of combinatorial multivalued maps,

and the geometry and sizes of the grids in phase space and pa-

rameter space. In general, at finer grids some Morse sets may

be split and the finer structure of dynamics in their regions

may be revealed. As a consequence, the complexity of the

Conley-Morse graphs depends on the grid size. Namely, if the

parameter value is fixed, the Conley-Morse graph on a finer

grid may be larger than that on a coarser grid, as long as

Morse sets with non-trivial Conley index are concerned. To

be more precise, recall that the Conley-Morse graph and its

subgraph consisting of Morse sets with non-trivial Conley

index are posets (partially-ordered sets). The poset of the sub-

graph on a finer grid is projected onto the poset on a coarser

grid by a map naturally induced by the grid refinement.

The same relation holds true for parameter grid refine-

ment. Namely, for a parameter grid element and one of its
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refined parameter grid elements, the corresponding poset of

the subgraph on a finer parameter grid element is projected

onto the poset on a coarser parameter grid element by a map

naturally induced by the parameter inclusion.

One of the problems that must be dealt with in the con-

struction of Conley-Morse graphs is the appearance of Morse

sets with trivial Conley index. Because of the trivial index,

one cannot prove that their invariant part is nonempty, and in

fact, for some systems, hundreds or thousands of such

“spurious” sets isolating the empty set may appear. A power-

ful method for detecting such Morse sets in order to prune

them and reduce the Morse graphs is to refine the grid in such

a set and check for the emptiness of its invariant part at the

higher resolution.2 Therefore, if a Morse set does not appear

to have the empty invariant part after several refinements

then this is an indication of the presence of non-trivial

dynamics and a possibility of bifurcation. See Ref. 1 for an

analysis of the saddle-node bifurcation from this point of

view.

The broader question of how continuation diagrams and

Conley-Morse graphs relate to more classical approaches to

dynamics like structural stability and bifurcations is a subtle

one. In cases like the saddle-node bifurcation, the behavior

of a Morse set under successive subdivisions can be sugges-

tive of the underlying dynamics. In other cases, however, the

coarse dynamics visible at a given level of subdivision pro-

vides very different information from what is known from

the classical perspective.

As an example, consider the logistic map f ðxÞ ¼
rxð1� xÞ for x � [0,1]. This map has an attracting fixed point

distinct from the origin for r � (1,3] and there is a well known

period-doubling cascade for r between 3 and approximately

3.57. Figure 3 gives a schematic picture of the dynamics for r
� [2.9, 3.7] on the level of the Morse graphs, where the phase

space is subdivided at least 16 times (i.e., into 216 boxes) and

the interval [2.9, 3.7] in parameter space is subdivided 10

times into 1024 boxes. (In this diagram, a small number of

artifacts due to discretization are being ignored to convey the

big picture.)

The Morse graphs in the diagram provide a schematic

picture of the dynamics for the correspondingly labeled

FIG. 2. Database information concerning dynamics for the overcompensatory Leslie model (5). (Upper left) Continuation Graph: Each node corresponds to a

Conley-Morse graph equivalence class. Each edge corresponds to a clutching graph between Conley-Morse graphs. (Upper right) Parameter space divided into

regions corresponding to Conley-Morse graph equivalence classes. Color coding of parameter space matches the color coding of the nodes in the continuation

graph. (Lower right) Clutching graph between two Conley-Morse graphs. This clutching graph corresponds to the highlighted (red) edge in the continuation

graph. The nodes of the Conley-Morse graphs have two types of labels [*] and (*). The square brackets indicate the Morse continuation class associated with

the node. The parenthesis indicate the level of homology on which the Conley index is nontrivial. (Lower Left) Conley indices of the Morse sets. The polyno-

mial is the invariant factor for the shift equivalence class of the linear map on homology using Z2 coefficients induced by the index map. See Sec. III C.

FIG. 3. Schematic picture of parameter space for the logistic map, r �
[2.9,3.7]. Here the transition from A to B occurs at 3.0078, B to C at 3.4563,

and C to D at 3.5500. These transitions correspond to the first three period

doublings, and they necessarily occur after the actual period doublings due

to discretization in phase and parameter space. The transition from D back

to C occurs at 3.5727, C to B at 3.5914, and B to A at 3.6781. These transi-

tions do not correspond to bifurcations, but instead to the way the periodic

attractor increasingly spreads out through the discretized phase space, mak-

ing it impossible to distinguish from the unstable dynamics (except for the

origin).
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region of parameter space. This picture can be further refined

by looking at the Conley index as in Sec. IV, though for now

we will omit any details. It suffices to say that the Conley

index verifies the existence of periodic behavior, as well as

whether that behavior is stable or unstable.

The transition from region A to region B indicates the

first period doubling bifurcation in the cascade. Likewise the

transition from region B to region C corresponds to the sec-

ond period doubling, and the transition from region C to

region D the third. But, beyond this, further period doublings

are invisible at this level of discretization. In fact, rather than

the dynamics becoming finer, Figure 3 shows the dynamics

becoming increasingly coarse as one proceeds through the

period doubling cascade. These transitions do not correspond

to bifurcations, but instead to the more global phenomenon

of the periodic attractor moving around in a larger area of

phase space given the level of discretization. Thus, as the

period doublings accelerate, we actually see a sort of “mirror

image” effect of the first few doublings. The important

observation is that changes of continuation class can in some

circumstances indicate the presence of classical bifurcations,

but they can also be a consequence of dynamics without nec-

essarily corresponding to any change in structural stability,

and that the two possibilities cannot always immediately be

distinguished.

III. ALGORITHMS

The mathematical framework proposed in Sec. II is

combinatorial in nature and the presented motivation was the

need for a robust description of dynamics with respect to

both parameters and measurement. In this section, we change

the perspective and observe that a combinatorial theory

raises hopes that the dynamical structures being extracted

are computable. Of course, the practicality of these computa-

tions depends upon the availability, development, and imple-

mentation of efficient algorithms.

A. Grid element container and combinatorial map
structure

As is indicated in Sec. II A, we use grids and multivalued

maps to translate between the continuous nonlinear world we

are interested in and the combinatorial world we may com-

pute in. This suggests the need for a programmatic interface

to construct and interact with grids. In our approach, the grid

elements themselves are identified with integers. The geomet-

ric objects of interest may be problem dependent and hence

take the form of type Geo. Basic requirements are that the

grid must provide methods for us to translate back and forth,

as well as provide us access to a complete list of grid ele-

ments. Furthermore, we need to be able to adaptively subdi-

vide these grids. This leads to the following constructs.

1. Iterator: A device used to loop through all grid elements

in the grid X .

2. Geometry: A method for producing the Geo object associ-

ated with a grid element.

3. Cover: A method for producing a set of grid elements which

are known to provide an outer cover of a Geo object.

4. Subdivide: A method to change the structure of the grid

by subdividing a grid element into smaller pieces.

5. Complex: A method to produce a cell complex out of a

collection of grid elements.

For the computations presented in this paper, we use a

grid based on multiscale cubical structures and deal exclu-

sively with Geo objects which are rectangular prisms. This

can be generalized without breaking the above interface.

Our representation of the dynamics is based on multival-

ued maps which are outer approximations. This cover pro-

duces enough grid elements to form an outer cover of the

geometric region provided.

To capture the dynamics of Ff acting on Rn � jfj for a

given f 2 Z requires a problem dependent computer routine

Ff that takes as input a Geo object A (think rectangular

prism) and outputs a Geo object B, with the property that

FfðA; jfjÞ � B. The construction of Ff makes use of a mix-

ture of analytic bounds and rigorous numerical methods

based on interval arithmetic (see for example Refs. 27 and

29). Typically, the choice of accuracy of Ff involves a trade

off between the difficulty of obtaining rigorous analytic

bounds, the cost of evaluating such bounds, and memory

constraints. With the routine Ff, the multivalued map can be

obtained by simple composition,

F f ¼ cover � Ff � geometry:

That is, we begin with a grid element, query the grid to

recover a Geo object, apply the user-defined map function to

produce another Geo object, and then cover this output with

grid elements.

The grid provides a covering of the space in terms of

topologically simple objects. However, to compute homol-

ogy requires the finer structure of a cell complex. For simple

grids consisting of cubes and simplices, the action of com-

plex is classical. The use of more sophisticated grids requires

the user to construct the appropriate complex operations.

B. Graph theory algorithms

For each f 2 Z, the Morse graph MGf is defined in

terms of the multivalued map F f and provides a decomposi-

tion of the global dynamics. There are two essential compu-

tations associated with the construction of MGf from F f:

identification of the strongly connected path components and

the partial order between these components which we refer

to as reachability. Both memory and run time are critical

issues that need to be addressed.

We begin by remarking that the computations are done

in an adaptive manner; working with a uniform cubical grid

decomposition of X � Rn is prohibitively expensive in both

time and memory. A description of an adaptive procedure is

presented in Ref. 2.

Tarjan’s Algorithm is a standard procedure for comput-

ing strongly connected components.4 It proceeds by execut-

ing a depth first search and keeping track of so-called low-

link information. Tarjan’s algorithm requires time linear in

the number of edges of the graph. It is important to note that

storing F f can be memory intensive. The number of vertices
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is related to the size and dimension of InvðX;FfÞ and the

number of edges associated with each vertex is determined

by the product of the eigenvalues of Df with magnitude

greater than one. An approach to circumventing this problem

is to avoid storing F f and instead using Ff, recompute F fðnÞ
whenever necessary. Naively running Tarjan’s algorithm

with this approach leads to recomputing F fðnÞ many times

for each grid element. Since these geometric computations

can be quite expensive (especially in the context of differen-

tial equations), this is unacceptable. We remark that we have

implemented a modified version of Tarjan’s algorithm such

that we do not store the entirety of F f in memory and yet

only have to evaluate F fðnÞ once for each n 2 X .10 More

precisely, there exists a strongly connected components algo-

rithm with space requirements that are linear in the number

of vertices, but the run time is linear in the number of edges,

and needs to query each vertex for its set of out-edges

exactly once.

Turning to the issue of computing reachability, for a

general directed graph there are no known linear time algo-

rithms. However, we are not interested in the entire reach-

ability relation, but only the reachability relation between

Morse sets. While theoretically the number of Morse sets in

a Morse decomposition can be arbitrarily large, in our expe-

rience this number is usually quite small. Because current

computers deal in 64-bit words, it is possible to establish the

reachability relation for up to 64 Morse sets in a single pass

of the edges (which we process in topological order), i.e., in

linear time. If there are more than 64 Morse sets, then we

require multiple sweeps. We note that we have yet to see

more than 64 Morse sets in an application.

C. Conley index algorithms

The are two issues associated with computing the Con-

ley index. First, we need to be able to compute the map on

homology induced by an index map. Second, we need to be

able to identify shift equivalence classes on these maps.

Addressing these questions in detail is beyond the scope of

this paper, thus we provide a heuristic and cursory descrip-

tion of the challenges, how they are addressed and point the

reader to appropriate references.

Recall from Proposition 2.8 that given a Morse set

MfðpÞ associated with F f, we use the sets

P1 :¼ F f

�
MfðpÞ

�
and P0 :¼ F f

�
MfðpÞ

�
nMfðpÞ

to define an index pair P ¼ ðP1;P0Þ. The task is to compute

fP;� : H�ðP1=P0; ½P0�Þ ! H�ðP1=P0; ½P0�Þ

given F f;P1, and P0.

Our approach is to consider the graph of F f as a subset

of X � X . More precisely, we consider the pairs,

G1 :¼ fðn; n0Þ 2 P1 � Xjn0 2 F fðnÞg and

G0 :¼ fðn; n0Þ 2 P0 � Xjn0 2 F fðnÞg:

Working with a cubical grid it is clear that G1 and G0

generate cubical cell complexes14 on which we can define

projection maps pd and pr from the graph to the domain and

range of F f, respectively. Under the assumption (which is

satisfied for the examples presented in Sec. IV) that X is the

grid of a rectangular region in Rn and F f is an outer approx-

imation of a continuous function taking rectangular images it

can be shown that

pd;� : H�ðjG1j; jG0jÞ ! H�ðP1;P0Þ ffi H�ðP1=P0; ½P0�Þ

is an isomorphism. Thus, in this setting it can be shown that

fP;� :¼ pr� � p�1
d� (6)

provides an appropriate map on homology. The details of

this construction in the more general setting of cell com-

plexes can be found in Ref. 11.

The careful reader will note that fP : ðP1=P0; ½P0�Þ !
ðP1=P0; ½P0�Þ is not well defined. What should be written is

fz,P, which is induced by fz for some choice of z 2 f. How-

ever, the right hand side of Eq. (6) is well defined which

implies that fz;P; � is independent of z 2 f. Note that this

provides a local proof of N3 (compare with Refs. 3, 26, 23,

and 8).

One challenge arises from the fact that the cell complex

representing G1 can be quite large. Because of this, we have

developed an algorithm that computes generators of

H�ðP1;P0Þ and lifts them to corresponding generators in

H�ðjG1j; jG0jÞ, thus directly computing p�1
d� . Furthermore,

this procedure only needs to construct a single graph fiber at

a time, and thus can have significantly lower memory

requirements. Again the reader is referred to Ref. 11 for fur-

ther details.

The computation of the shift equivalence class of

fP; k : HkðP1=P0; ½P0�Þ ! HkðP1=P0; ½P0�Þ, which is the sec-

ond aspect of computing the Conley Index, appears to be an

open problem except in special cases. Fortunately, one such

special case is that of vector spaces over finite fields. In this

case, fP,k can be written as a matrix A, and the shift equiva-

lence class of A can be determined from the rational canoni-

cal form of A. For a longer discussion of the rational

canonical form, see Ref. 7.

Recall that the rational canonical form of square matrix

A with entries in a field is a block diagonal matrix. The char-

acteristic polynomial of each block is called an invariant fac-
tor. Two matrices are similar (in the usual linear algebra

sense, meaning they represent the same linear transformation

after a change of basis) if and only if the set of invariant

factors for each matrix are identical, including multiplicity.

In this way, a list of invariant factors is able to represent an

equivalence class of similar matrices.

In the case of shift equivalence over a field, a modification

of the invariant factors of A suffices to determine the shift

equivalence class of A. The modification is easily described.

To be concrete, assume the invariant factors are written as pol-

ynomials is x, where x is merely a formal parameter. Then, as

a first step, divide through each invariant factor by the largest

possible power of x, so that the resulting constant term is non-

zero. Second, disregard all constant polynomials, i.e., those in

which x does not appear. The resulting set of polynomials

characterizes the shift equivalence class, in that A is shift
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equivalent to another matrix B if and only if A and B
are associated to the same set of polynomials, including

multiplicity.

D. Continuation algorithms

As is indicated in Sec. II D, the concepts of continuation

are based on the existence of clutching graphs. Computation-

ally, we are presented with two Morse decompositions

fMfðpÞ � Xjp 2 Pfg and fMfðp0Þ � Xjp0 2 Pf0 g. Let n be

the number of grid elements in all the Morse sets of both

Morse decompositions. The following naive algorithm

computes the clutching graph in Oðn2Þ time. Use an outer

loop which loops through every grid element in a Morse

set in the first grid, and an inner loop that loops through

the grid elements of the Morse sets of the second grid.

Whenever an intersection is found, an edge in the clutch-

ing graph is forged. This naive algorithm, though gener-

ally applicable, is woefully inefficient. In practice, we

re-express the Morse sets in one grid by covering them in

the other. After this step, what remains is to scan grid

elements, which takes linear time. Thus the complexity

bottleneck is determined by how hard it is to cover a set

of grid elements from [p2PfMfðpÞ with grid elements

from [p02Pf0Mf0 ðpÞ, and vice versa. This, in turn, depends

on the details of the grid implementation. For hierarchical

tree-based multiscale cubical structures where the outer

bounds of the grid are the same, we obtain an O(n)

algorithm.

Having determined the clutching graphs, it is easy to

identify the Morse continuation classes and Morse Graph

continuation classes via generating relations. However, we

require a data structure which takes these generating equiv-

alences as input and provide us with a representation of the

equivalence classes. This is a classical problem and hence

we employ the disjoint set data structure, also known as a

union-find structure. This structure, when initialized,

regards some finite set of elements as each belonging to dis-

joint singleton sets. By calling a union method, these sets

may be unioned together until the disjoint set data structure

represents the partition associated with the equivalence

relation. (The find method is used to determining a repre-

sentative element of each disjoint set; so it can be used to

determine if two elements are equivalent). The union and

find methods are not constant time, but rather the time com-

plexity is given by the inverse Ackermann function.28 For

all practical purposes, we may consider inverse Ackermann

to be constant time, as it grows extremely slowly. Given the

union-find structure, what remains to us is simply to pro-

duce a generating set of relations to learn the equivalence

classes. For each generating equivalence, we call the union

method.

E. Database structure

The desired result of our computations is a database

from which one can extract useful information concerning

the dynamics. This information takes the form of a collection

of records:

1. Parameter Record: Indicate a region of parameter space

and give it an index so it may be cross-referenced by other

records.

2. Morse Record: Indicate the Morse graph associated to

some parameter record.

3. Continuation Record: Indicate the clutching graph asso-

ciated to some indicated pair of parameter records.

4. Conley Record: Indicate the Conley index associated

with some indicated Morse set associated to some indi-

cated Morse Record.

If we only have records of type 1–3, we call it a Morse
Graph database. If, on the other hand, we have all types of

records, it is a Conley-Morse Graph database. In our com-

putations, we first produce a Morse Graph database, and

then process the continuation records using a union-find

structure in order to learn the Morse continuation classes.

Then we choose a single representative of that class, and

compute the “Conley Record” associated with it. By Corol-

lary 2.16 the Conley index is constant on continuation

classes of Morse sets. Clearly, this is much more efficient

than performing expensive Conley Index computations to

produce Conley Records for every Morse set of every Morse

Record.

F. Query algorithms

Once we obtain the database structure, we make use of

it via database queries. Because the records make reference

of each other, it is possible to make a number of different

queries. Examples include, but are not limited to:

1. Identify all parameter regions in the same Morse Graph

continuation class.

2. Identify all Morse Graph continuation classes for which

we have shown multiple basins of attraction exist.

3. Identify all Morse Graph continuation classes which con-

tain a Morse set with a given Conley index.

IV. APPLICATIONS

In order to demonstrate the potential of our approach,

we present two applications of the computational framework

introduced in the previous sections.

A. Three age-classes overcompensatory Leslie model

Consider the following three-age class overcompensa-

tory Leslie population model,

x ¼ ðh1xþ h2yþ h3zÞe�0:1ðxþyþzÞ

y ¼ 0:7x
z ¼ 0:7y

:

8<
: (7)

The variables x, y, and z represent the age class populations

in order of ascending age. If one views this as a model of a

plant population, then the 3 parameters hi; i ¼ 1; 2; 3 can be

interpreted as the seed production rates of the different age

classes. The exponential term represents an overcrowding

factor that depends on the adult population. This model and
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its biological relevance are discussed in greater detail in

Ref. 30.

To set up the computations, we choose the parameter

region of interest,

Z :¼ fðh1; h2; h3Þj14:5 � h1 � 30:5;

13:0 � h2 � 37:0; 13:0 � h3 � 37:0g � R3:

The parameter space grid Z is constructed by subdividing Z
into 32 equal sized intervals in each direction. This divides pa-

rameter space into 32 768 three dimensional cubical cells. To

speed up the computation, we choose to compute for sets of

parameter values that are represented by the edges in this com-

plex. Thus, there are a total of 104 544 one dimensional pa-

rameter boxes for which we produce a Conley-Morse graph.

The compact region in phase space is given by

X :¼ ½0; 320:056� � ½0; 224:040� � ½0; 224:040� � ½0;1Þ3:

It can be shown analytically that X is an isolating neighbor-

hood for the global attractor of Eq. (7) for all h 2 Z. Using

an adaptive subdivision algorithm similar to that of Ref. 2,

the final grid in phase space consists of cubes obtained by

subdividing X into 212 equal sized intervals in each direction.

In general, this produces Morse decompositions consisting

of many Morse sets most of which are spurious in the sense

that the recurrence is due to coarseness in the discrete repre-

sentation of phase space. To eliminate obvious spurious solu-

tions, the cubes in each Morse set are once again subdivided

up to 24 times in each direction and recurrence within these

regions is checked. If the recurrence disappears, then one

can conclude that the associated region in phase space does

not contain recurrent dynamics. For a more detailed discus-

sion of this step, see Ref. 2.

The computation based on the aforementioned inputs

was run on 15 nodes of a cluster, using 3 processors per

node. Each node had a minimum of 8 GB of memory. The

total computation time was 137 h, of which 134 h were

needed to find the Morse graphs.

As indicated in "Introduction," an important impetus

behind the database is to be able to quickly and efficiently

find interesting dynamics. Given that this is a population

model, a natural question concerns the structure of attractors

and/or the existence of multiple attractors as a function of

the parameter values.

Let us begin by considering the existence of multiple

attractors. The appropriate query is to ask for those nodes in

the continuation graph for which the associated Morse

graphs contain more than one minimal node. To make the

results visually manageable, we restrict our attention to the

larger continuation classes. In particular, Figure 4 shows the

FIG. 4. Continuation graph showing the 15 largest continuation classes for

the system (7). The boxed nodes represent Morse graphs with multiple mini-

mal nodes which implies that at the corresponding parameter values there

exist multiple basins of attraction. The class labeled A contains 13 964 pa-

rameter boxes, B contains 5222 boxes, and C contains 1497 boxes.

FIG. 5. Conley-Morse graph for continuation class A in Figure 4. Here the

partial ordering between two nodes joined by an edge is indicated by their

relative heights (the lower node being less than the higher node). The brack-

eted numbers on each node indicate the Morse set continuation class num-

ber, and the numbers in parentheses indicate any dimensions in which the

Conley index is nontrivial. Here MSCC[1] contains the unstable origin.

MSCC[4] is also unstable, as indicated by the nontrivial Conley index on

level 1. The Morse graph further suggests saddle-like behavior separating

the two attractors, although more analysis is required to prove this.

FIG. 7. Ten boxed nodes representing the continuation classes over which

the Morse set continuation class of MSCC[3] in Figure 5 extends. One can

conclude that MSCC[3] is a 4-cycle set from the Conley index information.

Therefore all of the boxed nodes indicate regions of parameter space exhibit-

ing this behavior.

FIG. 6. Three boxed nodes representing the continuation classes over which

the Morse set continuation class of MSCC[0] in Figure 5 extends. By the dis-

cussion in the text, MSCC[0] is an attracting 1-cycle set. Although the three

nodes represent three continuation classes, hence potentially different dynam-

ics, any difference in the observed dynamics must occur away from MSCC[0].
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continuation graph for the 15 largest continuation classes.

These 15 continuation classes are associated with 103 593 of

the 104 544 grid elements of parameter space which implies

that over 99% of parameter space is accounted for. Recall

that two nodes are adjacent in this graph if they represent

adjacent regions of parameter space, so that this gives, in a

sense, a schematic picture of the three-dimensional parame-

ter space.

The boxed nodes in Figure 4 represent Morse graphs

with multiple minimal nodes and therefore for the corre-

sponding parameter values, there are multiple basins of

attraction. Observe that there are three mutually adjacent

continuation classes with multiple attractors. The sizes of

these parameter regions are 13 964, 5222, and 1497 parame-

ter boxes. Thus in roughly 20% of the parameter space we

study, we can guarantee the existence of at least two basins

of attraction.

We now turn to the question of identifying the structure

of the dynamics in the attractors. In particular, we make use

of the following language.

FIG. 8. A Conley-Morse graph with an attractor that belongs to the Morse

set continuation class MSCC[5]. Here MSCC[5] is a 2-cycle set, and the

only attractor since it is the only minimal node. MSCC[6] has nontrivial

Conley index on the first level, which proves it contains recurrent dynamics.

Since the only Morse set below MSCC[6] in the partial order is MSCC[5]

there must be a connecting orbit between the two.

FIG. 10. The numerically generated bifurcation diagram (colored plate in the center) and corresponding schematic phase portraits for 3-CML, obtained by

Komuro. In the bifurcation diagram in the center, the following abbreviations are used: PD¼ period-doubling bifurcation, NS¼ (supercritical) Neimark-

Sacker bifurcation, NS(sub)¼ subcritical Neimark-Sacker bifurcation, ICC¼ invariant closed circle. The parameter range is chosen to be ½0:7; 0:8� �
½�0:05; 0:05� with d¼ 0.06, which is divided into six regions, numbered by circled numerals. Each parameter region corresponds to the plate numbered by the

same circled numeral. The invariant closed circles appear in Regions 3–6. Especially, in Region 4, there exist multiple invariant closed circles, the unstable

one being periodic with period two under the action of 3-CML. Figure courtesy of M. Komuro.

FIG. 9. Boxed nodes indicate continuation classes for which the Morse set

containing the origin is not an attractor. Biologically, these can be consid-

ered regions that exhibit persistence or permanence, i.e., regions where the

attractor is separated from the origin (extinction) at the scale of the computa-

tion. Here, all displayed nodes are boxed, so one can conclude that most of

parameter space exhibits persistence.
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Definition 4.1. An isolated invariant set S for a map f :
X 7!X is a T-cycle set if there exist T disjoint, compact

regions N1;…;NT such that S ¼ InvðN; f Þ where N :¼
[T

i¼1Ni is an isolating neighborhood, and

f ðNi \ NÞ � Niþ1; i ¼ 0;…; T � 1;

where N0 :¼ NT .

Consider the continuation class A with 13 964 parameter

boxes. The associated Conley-Morse graph is shown in

Figure 5. Recall that the bracketed numbers identify the

Morse set continuation class (MSCC) of each node in the

graph. The Conley index of MSCC[0] is trivial except in

dimension zero, where it has invariant factor xþ 1mod2. By

[Ref. 2, Proposition 5.8], we conclude that the associate

Morse set is a 1-cycle set. More specifically there is an asso-

ciated isolating neighborhood which is contractible and

maps strictly to its interior under the dynamics of Eq. (7).

As is indicated in Sec. II D, the above mentioned

description in terms of the 1-cycle set extend to the entire

Morse set continuation class MSCC[0]. The three boxed

nodes in Figure 6 indicate Morse set continuation classes

over which MSCC[0] extends.

The other attractor, MSCC[3], has Conley index which is

trivial except in dimension zero where it is represented by the

invariant factor x4 þ 1mod2. This is characteristic of a 4-cycle

set. The extent of this Morse set continuation class is given by

the boxed nodes in the continuation graph in Figure 7.

Observe that the nodes in the continuation graph, which

are not boxed in either Figure 6 or Figure 7, must contain

another distinct attracting Morse set continuation class. It

appears, for example, as MSCC[5] in the Conley-Morse

graph shown in Figure 8. The Conley index of MSCC[5] in

dimension zero is represented by x2þ 1, which is character-

istic of a 2-cycle set. Among the fifteen largest continuation

classes, these are all of the Morse set continuation classes of

attractors that appear.

Observe that we have characterized the attractors for a

large fraction of parameter space. However, because of the

concern of extinction in the context of small perturbations

biologists often are interested in understanding when the

attractor is bounded away from the states of extinction. This

is often called persistence or permanence (see Ref. 13 for a

precise definition and further discussion). In the setting of

this model, extinction can be identified with the origin. We

remark that the origin appears in the database as MSCC[1].

It can also be checked that MSCC[1] extends over all of the

fifteen largest continuation classes (see Figure 9). Further-

more, in none of these cases, it is an attracting Morse set

(special cases of this can be seen in Figures 5 and 8). Since

the computations have been done at a minimal fixed scale,

we can conclude that Eq. (7) exhibits persistence.

Of course there are additional questions that can be asked

concerning the dynamics of Eq. (7). For some of these, addi-

tional database queries can prove useful. However, we hope

that in the context of attractors, which is the most reasonable

entry point for questions concerning biologically observable

phenomena, we have made it clear that the database provides

sufficient information to obtain useful nontrivial answers.

B. Three-dimensional coupled map lattice

As another example, the Conley-Morse Database soft-

ware has been applied to the coupled map lattice (CML), a

coupled system of maps introduced by Kaneko and others in-

dependently around early 1980s, see Ref. 16 and references

therein for more information.

FIG. 11. The invariant circles appearing in Region

4 in Figure 10, computed numerically by M.

Komuro. The red circle is stable, while the green

and blue ones are unstable. Figure courtesy of M.

Komuro.

FIG. 12. The continuation diagram computed by the Conley-Morse database

software. Compared to Figure 10, the number of divided regions of the pa-

rameter domain agrees, but each region is a little tweaked, which is mainly

due to the overestimation by the construction of multivalued maps.
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The n-CML is an n-dimensional dynamical system

F : Rn ! Rn, with FðxÞ ¼ ðF1ðxÞ;…;FnðxÞÞ for x ¼
ðx1;…; xnÞ given by

FiðxÞ ¼ ð1� eÞfaðxiÞ þ
1

2
ðe� dÞfaðxi�1Þ þ

1

2
ðeþ dÞfaðxiþ1Þ;

i ¼ 1;…; n;

FIG. 13. Results of the computations for the 3-CML. For each Morse graph continuation class, a Conley-Morse graph and the corresponding Morse sets are

plotted for a sample parameter point. The choice of the parameter for each class is marked with a red circle at the left-hand side, the Conley-Morse graph for

the parameter is drawn in the center, and the Morse sets for the parameter appear at the right-hand side.
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where x0 ¼ xn and xnþ1 ¼ x1. This system has three parame-

ters, a, e, and d. In this paper, we choose fa to be the logistic

map, faðnÞ ¼ 1� an2.

There is a well-studied, coupled dynamical system, sim-

ilar to CML, known as the globally coupled maps (GCMs)17

defined by

FðxÞi ¼ ð1� eÞfaðxiÞ þ
e
n

Xn

j¼1

faðxjÞ i ¼ 1;…; n:

As an important feature of CML, as compared to GCM,

CML is a non-symmetric coupling, and as a result, CML

exhibits a traveling wave at some parameters. In order to

study the traveling waves more closely, Komuro31 examined

the 3-CML in detail, using conventional numerical analysis.

The object corresponding to traveling waves in 3-CML is an

invariant closed circle (ICC), which can be observed numeri-

cally in a region of the ða; eÞ-parameter plane of 3-CML with

fixed d¼ 0.06. See Figures 10 and 11 for a numerically gen-

erated bifurcation diagram obtained by Komuro using the

numerical method proposed in Ref. 18.

Below, we describe the result of computation of the

3-CML using the Conley-Morse Database software. In fact,

the actual computation was done using the first version of

the software explained in Ref. 2, as the latest version of the

software discussed in the previous sections was not yet fully

available at the time of the computation.

The computation parameters are taken as follows:

• ða; eÞ varies in ½0:72; 0:79� � ½�0:02; 0:04�
• d is fixed to 0.06.

Note that in this parameter region, fa has attracting period-

2 periodic points. The box of ½0:72; 0:79� � ½�0:02; 0:04� is

divided into 16� 16 small boxes, and we take the center of

each box as the input parameter value for each computation.

As the interval arithmetic is used in the software, we could

have taken the entire small boxes as the input parameters for

the computations, but this would have been much more time

consuming, and the overestimates would require us to use a

finer grid in the parameter space. The phase space for the logis-

tic map is taken as [–1.1, 1.1], hence the entire phase space is

½�1:1; 1:1�3, on which we put the uniform grid decomposition

into 29 � 29 � 29 boxes. When needed, we set the refinement

level of subdivision as 4, in case the computation result is not

sufficient.

The Conley-Morse graph and corresponding phase space

structure for each parameter region in Figure 12 is shown in

Figure 13. The format of the Conley index information of the

Conley Morse graphs follows (Ref. 2). For instance, the

expression p0:0!{1}(12347) in the Conley-Morse graph in

Region No. 1 indicates that there is a (unique in this case)

Morse set labelled p0 consists of 12 347 cubes in this compu-

tation, and the corresponding Conley index is non-trivial in

the 0-th level of homology, whose associated homology

map has non-zero eigenvalue 1. Similarly, the Conley-Morse

graph in Region No. 3 contains three Morse sets, and the larg-

est one labelled p1, identified by the frame color to see that it

corresponds to the pink set in the right figure, consists of 1

483 716 cubes, and the corresponding Conley index is non-

trivial in the 1st and 2nd levels of homology, with both of the

homology maps having non-zero eigenvalue �1. These

FIG. 13. (Continued).
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results agree well with the bifurcation structure shown in Fig-

ure 10.
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