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Combinatorial Representation of Parameter Space for Switching Networks∗
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Abstract. We describe the theoretical and computational framework for the Dynamic Signatures Generated by
Regulatory Networks (DSGRN) database. The motivation stems from an urgent need to understand
the global dynamics of biologically relevant signal transduction/gene regulatory networks that have
at least 5 to 10 nodes, involve multiple interactions, and have decades of parameters. The input
to the database computations is a regulatory network, i.e., a directed graph with edges indicating
up or down regulation. A computational model based on switching networks is generated from the
regulatory network. The phase space dimension of this model equals the number of nodes and the
associated parameter space consists of one parameter for each node (a decay rate) and three parame-
ters for each edge (low level of expression, high level of expression, and threshold at which expression
levels change). Since the nonlinearities of switching systems are piecewise constant, there is a natural
decomposition of phase space into cells from which the dynamics can be described combinatorially
in terms of a state transition graph. This in turn leads to a compact representation of the global
dynamics called an annotated Morse graph that identifies recurrent and nonrecurrent dynamics. The
focus of this paper is on the construction of a natural computable finite decomposition of parameter
space into domains where the annotated Morse graph description of dynamics is constant. We use
this decomposition to construct an SQL database that can be effectively searched for dynamical
signatures such as bistability, stable or unstable oscillations, and stable equilibria. We include two
simple 3-node networks to provide small explicit examples of the type of information stored in the
DSGRN database. To demonstrate the computational capabilities of this system we consider a simple
network associated with p53 that involves 5 nodes and a 29-dimensional parameter space.
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1. Introduction. Though the method presented in this paper is general, our primary mo-
tivation arises from the need to understand the global dynamics of signal transduction/gene
regulatory networks, e.g., [35]. Our mathematical abstraction of a regulatory network RN
is a directed graph where the nodes (vertices) V = {1, . . . , N} indicate the species and the
edges E indicate the activation or repression of production of one species by another (this
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COMBINATORIAL REPRESENTATION OF PARAMETER SPACE 2177

is made precise in Definition 2.1). There are at least three fundamental challenges in de-
termining if a given regulatory network provides a biologically relevant model: determining
completeness, authentication, and nonlinear interaction. As discussed in [36] completeness
and authentication are concerned with whether the relevant species are included in the regu-
latory network and whether the proposed interactions are correct. Genomic sequencing data
informs completeness, while biochemical knowledge is required for authentication. While the
quantity of genomic data is rapidly increasing, detailed biochemical information is still sparse.
Since the interaction between species is typically governed by multiscale processes deter-
mining appropriate explicit nonlinearities let alone realistic physical parameters is extremely
difficult.

We propose to address these challenges by employing a crude, compact, robust, mathe-
matically rigorous, finitely presented description of dynamics that allows for a combinatorial
representation of parameter space. As a consequence, given a regulatory network RN, we are
able to build the associated database of dynamic signatures which codifies the global dynamics
over all of parameter space. The underlying theoretical ideas have already been exploited to
study a variety of mathematical and biological models [4, 8, 9, 7]. However, to effectively
use these ideas in the context of moderately sized gene regulatory networks where complete-
ness and authentication are in question, we require orders of magnitude greater efficiency for
approximating the dynamics and the ability to work with much higher dimensional param-
eter spaces. This paper describes and justifies a revised approach that achieves the desired
efficiency and provides a natural decomposition of parameter space.

Our starting point has much in common with an approach often referred to as logical
networks [2]. The difficulties, alluded to above, in determining and then parameterizing
appropriate interactions and nonlinearities has lead to the widespread use of relatively simple
models that aim to capture qualitative features of the dynamics. The simplest ones are the
Boolean models, where each node is represented as either on or off; the dynamics of the ith
node consist of evaluation of a logical function defined by this binary representation of the
state of the system. The evolution of the network proceeds in discrete steps in time which
can either synchronously evaluate all functions [3, 13] or do so asynchronously [10, 45, 38].

Our approach is most closely associated with asynchronous logical networks. Given a
regulatory network RN with N nodes, the associated switching system [27, 28, 29, 30, 17, 18,
19, 16] is an N -dimensional system of ordinary differential equations of the form

(1) ẋ = −Γx+ Λ(x),

where Γ is a diagonal matrix with positive entries and Λ is a piecewise constant function (see
Definition 2.4).

There are a variety of parameters associated with switching networks. To each variable xi
there is a decay rate γi > 0 (the diagonal terms in Γ). To each edge in RN, corresponding to
the impact of species i on j, we associate two positive expression levels, low lj,i and high uj,i,
and a threshold θj,i for xi at which the expression levels switch. The values of the function Λ
are determined by sums and products of the parameters l and u where the particular formula is
generated by logical rules that indicate how different nodes interact. Thus given a regulatory
network the set of parameters lies in [0,∞)D, where D = N+3 ·#(E), where N is the number
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2178 CUMMINS, GEDEON, HARKER, MISCHAIKOW, AND MOK

of nodes, and #(E) is the number of edges. Our goal is to characterize the global dynamics
for every point in parameter space.

We hasten to add (this is made clear in the sections that follow) that we do not view
(1) as a mathematical model for the biological process; rather (1) is used only to motivate
the combinatorial computations that are the focus of this paper. To emphasize this point
we make two comments. First, Λ is piecewise constant (and not even defined when xi =
θj,i); thus classical trajectories to (1) do not exist. Second, the main result of [25] is that
applying the methods described in this paper to two-dimensional switching systems results in
a representation of the global dynamics that is valid for a much wider family of nonlinearities,
i.e., for a system of the form

(2) ẋ = −Γx+ f(x)

where f is a Lipschitz continuous function. Algebraic topological tools such as the Conley
index [39] can be applied to this representation to extract information concerning the struc-
ture of invariant sets for dynamics of (2). We also note that for a typical parameter value
one can obtain explicit a priori estimates in terms of parameters of the system (see [25])
for how much the nonlinearity f can differ from the switching nonlinearity Λ. It is in this
sense that we view (1) as a computational tool, rather than the mathematical model of bi-
ological reality. An important implication is that we can obtain rigorous results about the
dynamics without explicit/detailed knowledge of the appropriate nonlinearity for the biolog-
ical problem of interest. It is worth contrasting our approach to more classical methods for
relating the dynamics of smoothed systems (2) with the discontinuous switching systems (1)
[21, 33, 47].

To approximate the dynamics of the switching system at a fixed parameter value we use
the thresholds θ to decompose phase space. These decompositions are then used to determine
state transition diagrams (see section 3). In this format the dynamics is represented by a
sparse directed graph F with roughly

∏N
n=1[O(n) + 1] vertices, where O(n) is the number

of out-edges at node n. Given the size of the regulatory networks that we are interested in
analyzing, storing all the state transition graphs that arise as one sweeps through parameter
space is impractical. With this in mind we focus on the essential dynamical structures: the
recurrent dynamics, i.e., the nontrivial strongly connected components of F ; and the gradient-
like dynamics, i.e., the reachability, defined by paths in F , between the recurrent components.
There are efficient (both in time and memory) graph algorithms that allow one to identify
strongly connected components (see [4, 8] and references therein, and see [6] for an application
of these techniques in the context of regulatory networks). For many networks of interest this
step can be performed rapidly enough so that it is tractable to repeat it over many parameter
values. We encode this information in the form of an annotated Morse graph MG(F). The
Morse graph is the minimal directed acyclic graph such that each nontrivial strongly con-
nected component is represented by a distinct node and the edges indicate the reachability
information inherited from F between the nodes (see section 3.3). The annotations consist of
optional information, typically problem specific, that allow for easier identification between
the dynamics captured by our approach and the dynamics of biological interest.

The computational steps described above are valid for individual parameter values. A
fundamental contribution of this paper is the identification of a natural decomposition of
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COMBINATORIAL REPRESENTATION OF PARAMETER SPACE 2179

parameter space into regions, called parameter cells, over which the transition graphs and
hence Morse graphs are constant. The cells are given in terms of explicit polynomial inequal-
ities in the parameter values and hence take the form of semialgebraic sets. Since the global
dynamics of switching networks is parameter dependent and we are working with high dimen-
sional parameter spaces it should come as no surprise that understanding the geometry and
organizing the structure of all parameter cells is nontrivial. With this in mind we introduce
the parameter graph (see section 4), an undirected graph where each node is identified with a
parameter cell and the edges provide information about how the parameter cells are related.
In fact, we make use of two parameter graphs. The first, called the geometric parameter graph
(GPG), is based on the topology of parameter space as a subset of [0,∞)D. This provides a
description of the decomposition of parameter space in a language familiar to researchers in
the field of dynamical systems. The second, called the combinatorial parameter graph (CPG),
is what is actually computed. We prove that there is a graph homomorphism h : GPG→ CPG
and conjecture that the geometric and combinatorial parameter graphs are equivalent but
only have a proof (see Theorem 4.18) for regulatory networks whose nodes have at most three
in-edges and out-edges.

Our construction of the CPG for RN is based on two facts. First, the graph structure
is actually a canonical graph product over factor graphs CPGn which depend only on the
local structure of RN around each network node n. Second, each CPGn is a connected
subgraph of a larger graph of combinatorial parameters and may be constructed via a graph
traversal search for realizable combinatorial parameters, i.e., those that are realized by some
geometric parameter of RN. In particular, for each node n in RN we compute the set of
possible combinatorial parameters, which is determined by the number of out-edges at n,
the number of in-edges at n, and the logic that determines how the information from the
in-edges is processed. To identify whether a particular combinatorial parameter is realizable
we make use of cylindrical algebraic decompositions (CAD) [15] to determine if there exists
a solution to an associated the set of inequalities. Recall that a CAD of a semialgebraic
set is a recursive set of inequalities that defines the elements of the set. As discussed in
Remark 4.16, CAD computations are expensive. However, once done they can be reused at
a constant cost. Thus our strategy is to perform the CAD computations and store them.
A list of the node structures for which CAD computations have been performed is given in
Table 1.

Our inability to prove that h : GPG → CPG is always an isomorphism stems from our
lack of general understanding of the geometry of individual and pairs of regions on which
transition graphs are constant. However, the CAD computations, once performed, pro-
vide sufficient information to check the conjecture. This is the essence of the proof of
Theorem 4.18.

The concepts and techniques introduced in this paper have allowed us to develop the
DSGRN (Dynamic Signatures Generated by Regulatory Networks) software [32] that has the
following features and capabilities:

• It can compute the size of parameter graphs (number of parameter nodes) for any
regulatory network constructed using components found in Table 1. In particular we
supply a web-based program to design such networks which automatically tabulates
the size of the parameter graph.
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2180 CUMMINS, GEDEON, HARKER, MISCHAIKOW, AND MOK

Table 1
Network node components.

#S(i) #T(i) Mi #PGi/#T(i)!

1 1 x 3
1 2 x 6
1 3 x 10
2 1 x+ y 6
2 1 xy 6
2 2 x+ y 20
2 2 xy 20
2 3 x+ y 50
2 3 xy 50
3 1 x+ y + z 20
3 1 xyz 20
3 1 x(y + z) 20
3 2 x+ y + z 150
3 2 xyz 150
3 2 x(y + z) 155
3 3 x+ y + z 707
3 3 xyz 707
3 3 x(y + z) 756

• It can access a database of CADs of parameter cells corresponding to parameter nodes
for regulatory networks constructed using components found in Table 1.
• It can compute annotated Morse graphs given a parameter (cell) and a regulatory

network.
• It can compute databases of annotated Morse graphs over an entire (combinatorial)

parameter graph given a regulatory network. These databases are designed using SQL
and support a range of queries over Morse graph attributes and annotations.
• We supply a web interface to interact with databases that can filter parameter graphs

to show only nodes which satisfy certain queries.
• We supply a command line interface which allows access to phase space information for

the associated switching system of a regulatory network given a particular parameter
of interest.
• We have supplied documentation of the program along with tutorial materials.

To provide the reader with intuition concerning the output in section 5 we consider three
regulatory networks. The first two, the repressilator and the bistable repressilator, consist
of three nodes and three and four edges, respectively. For these examples the parameter
graphs are sufficiently small that they can be easily visualized. In general, the output of
DSGRN grows rapidly as a function of the size of the regulatory network and thus can be
accessed efficiently only through queries. To give a sense of the computational capabilities of
DSGRN for problems of biological interest we consider a subnetwork associated with p53 and
report the computational times and costs. The parameter graph information can be accessed
elsewhere [32].

Before concluding this introduction we return to the challenge of determining completeness
and authentication where we believe DSGRN can be a useful tool. These challenges imply that
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in early stages of modeling one cannot necessarily assume that a proposed regulatory network
is “correct.” By allowing one to compare the output of the model dynamics against experimen-
tal data, Boolean models provide a computationally tractable means to attempt to identify
the existence of missing species and interaction and/or to exclude nonexistent interactions
and unnecessary species (see, for example, [12, 11, 31, 40]). Because the computations that
we perform to identify the dynamics is purely combinatorial, the cost of our computations is
similar to that of pure Boolean models. However, because we model using real numbers and
ordinary differential equations, DSGRN can capture finer dynamical structures that presum-
ably can be more readily identified with experimental values. More significantly, the fact that
DSGRN provides a complete description of the dynamics over all of parameter space opens
up new opportunities for deciding upon the plausibility of or comparison of different models,
e.g., how stable is the desired dynamic phenotype to changes in parameters, and for control of
the dynamics, e.g., which changes in parameters result in a desired dynamic phenotype. We
leave the implementation of these ideas to future works.

2. Switching networks. We review the essential concepts of switching networks. In sec-
tion 2.1 we define regulatory networks and their associated switching systems. In section 2.2
we discuss the interpretation of the nonlinearities in the switching system as performing log-
ical operations on the inputs. In section 2.3 we use the discontinuities of the nonlinearity of
(1) to impose a natural decomposition of phase space.

2.1. Regulatory networks.

Definition 2.1. A regulatory network RN = (V,E) is an annotated finite directed graph
with vertices V = {1, . . . , N} called network nodes and annotated directed edges E ⊂ V ×
V ×{→,a} called interactions. An → annotated edge is referred to as an activation and an a
annotated edge is called a repression. We indicate that either i→ j or i a j without specifying
which by writing (i, j) ∈ E. We allow for self-edges but admit at most one edge between any
two nodes, e.g., we cannot have both i → j and i a j simultaneously. The set of sources and
targets of a node n are denoted by

S(n) := {i | (i, n) ∈ E} and T(n) := {j | (n, j) ∈ E} .

The cardinality of S(n) and T(n) are denoted by #(S(n)) and #(T(n)). Each node is equipped
with a multilinear function Mi : RS(i) → R, called the logic of node i (a detailed description
of its derivation is presented in section 2.2).

For convenience we abuse notation and occasionally write a network node as xi instead
of i. For instance, we may write (i, j,→) ∈ E and (i, j,a) ∈ E, respectively, as xi → xj and
xi a xj .

Remark 2.2. Throughout this paper we assume that the regulatory network RN does not
have any direct negative self-regulation i a i for any i. This is done for technical reasons
related to the code (see Remark 3.9). This is not a serious restriction. In biological systems
negative self-regulation is often mediated by an intermediary, e.g., xi → Xi a xi [20, 23].
Furthermore, future planned developments of the code will allow the user to remove this
restriction.
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Definition 2.3. Given a regulatory network RN = (V,E), for each edge (i, j) ∈ E (i.e.,
i → j or i a j) we associate three parameters: lj,i, uj,i, and θj,i. (Note the matrix-style
subscript order convention.) Additionally, to each node i ∈ V we associate a decay rate
γi. Each of these parameters is a real number, so we may regard the collection of all these
parameters as a tuple (l, u, θ, γ) ∈ RD. We call this collection of numbers a parameter for
RN.

Definition 2.4. Given a regulatory network RN the associated switching system at param-
eter (l, u, θ, γ) ∈ RD, where D = N + 3 ·#(E), is given by

(3) ẋj = −γjxj + Λj(x), j = 1, . . . , N,

where

(4) Λj := Mj ◦ σj .
Here σj : RN → RS(j) is a multidimensional step function defined componentwise (i.e., by its
coordinate projections πi(σj)) for each i ∈ S(j) as

(5) σj,i = πi(σj(x)) :=





lj,i if i→ j and xi < θj,i or if i a j and xi > θj,i,

uj,i if i→ j and xi > θj,i or if i a j and xi < θj,i,

undefined otherwise.

Remark 2.5. Switching systems written in the form (3) are equivalent to (1) where Γ is
the diagonal matrix with diagonal entries Γii := γi and the ith coordinate of Λ is Λi.

The dependence on x of the right-hand side of (3) involves the expression σj(x). Since
σj is a multidimensional step function which compares variables to thresholds, a grid-like
structure is imposed upon phase space.

Definition 2.6. Let z = (u, l, θ, γ) be a parameter for the regulatory network RN. For
each i ∈ V , we adopt the convention that θ−∞,i = 0 and θ∞,i = ∞. For all i ∈ V , j1,
j2 ∈ V ∪ {−∞,∞}, we say θj1,i and θj2,i are consecutive thresholds if θj1,i < θj2,i and there
does not exist θj,i such that θj1,i < θj,i < θj2,i. For each i = 1, 2, . . . , N , suppose θai,i and θbi,i
are consecutive thresholds. Then we say that the product of open intervals

κ :=
N∏

i=1

(θai,i, θbi,i)

is a cell of the regulatory network. We denote the collection of cells as K(z). If aj ∈ V , then
we say that the bounded hyperplane

κ−j :=

j−1∏

i=1

(θai,i, θbi,i)× {θaj ,j} ×
N∏

i=j+1

(θai,i, θbi,i)

is a left face of κ with projection index j and switching index aj. Similarly, if bj ∈ V , then
we say the bounded hyperplane

κ+j :=

j−1∏

i=1

(θai,i, θbi,i)× {θbj ,j} ×
N∏

i=j+1

(θai,i, θbi,i)D
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is a right face of κ with projection index j and switching index bj. A face of a cell κ is either
a left or a right face of κ.

We restrict our focus to nonnegative parameters Z̄ ⊂ [0,∞)D ⊂ RD for which we interpret
the l and u values as the lower and upper values that may be taken, respectively. This imposes
the additional requirement that lj,i ≤ uj,i.

Definition 2.7. Given a switching network RN the associated parameter space Z̄ is defined
to be the collection of all parameters (l, u, θ, γ) ∈ [0,∞)D for which lj,i ≤ uj,i for all (i, j) ∈ E.
A parameter z = (l, u, θ, γ) ∈ Z̄ is regular if

1. the inequalities are satisfied strictly, i.e., 0 < lj,i < uj,i, 0 < γi, and 0 < θj,i,
2. for each fixed i the threshold values θj,i are distinct, and
3. for each κ ∈ K(z) the value Λi(κ) 6= γiθj,i for each threshold θj,i that defines κ.

We denote the collection of regular parameters by Z. Notice that Z̄ is (as the notation suggests)
the topological closure of Z in RD and the set Z is generic in Z̄. For a regular parameter
z ∈ Z the thresholds {θj,i : j ∈ T(i)} occur in some definite (total) order Oi(z) for each i ∈ V .
We denote by O(z) := (O1(z), . . . , ON (z)) the collection of these orders over all nodes and the
collection of all orderings O(z) over all of parameter space as

O(Z) :=
⋃

z∈Z
O(z).

2.2. Network node logics. Definition 2.4 does not specify the nonlinear functions Mj . As
indicated in the introduction our approach is associated with the interpretation of regulatory
networks as logical networks. To be more precise, a logical expression involving truth variables
vi, logical conjunctives ∧ (i.e. ANDs), and logical disjunctives ∨ (i.e., ORs) leads to an analo-
gous arithmetic expression by replacing ∧ with · and ∨ with +. For example, (a∨b)∧c becomes
(a+ b)c. Observe that given truth variables vi, a logical expression L(v1, v2, . . . , vn) (without
negations) leads unambiguously to the multilinear arithmetic expression M(x1, x2, . . . , xn)
given by

M(x1, x2, . . . , xn) :=
∑

L(v1,...,vn)=T

∏

vi=F

(1− xi)
∏

vi=T

xi,

where xi ∈ R.
Note that for every logical expression where each variable occurs at most once the recipe

of replacing ∧ with · and ∨ with + produces an arithmetic expression which is equivalent to
this multilinear expression.

For the purposes of this paper our focus is on regulatory networks where one considers a
logic for each network node j consisting of a logical expression involving each of the variables
xi ∈ S(j) precisely once. The multilinear functions Mj appearing in (4) are obtained from
these logical expressions.

Remark 2.8. These assumptions on the structure of the terms in Mj imply that Λj can
always be expressed in the form of a sum of monomials involving the step functions σj,i(x)
where the degree of σj,i(x) is either zero or one (see also [5]), and thus this is a proper subset
of the set of multilinear functions.
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2184 CUMMINS, GEDEON, HARKER, MISCHAIKOW, AND MOK

2.3. Cells and vector fields. If we restrict to a cell, then (3) reduces to a much simpler
linear form. In particular, observe that given a cell κ, if x, x′ ∈ κ, then Λ(x) = Λ(x′), and
therefore Λ(κ) is well-defined. In accordance with this observation we make the following
definitions.

Definition 2.9. A regulatory network RN and a choice of parameter values z ∈ Z leads to
a uniquely defined switching system (1) and set of cells K(z). The κ-cell vector field for a cell
κ ∈ K(z) is given by

(6) fκ(x) := −Γx+ Λ(κ).

Observe that

Φ(κ) := Γ−1Λ(κ)

is a global attracting fixed point for (6). Accordingly we say that a cell κ is an attracting cell
if

Γ−1Λ(κ) ∈ κ.

3. State transition diagrams. As indicated in the introduction we capture the dynamics
of (3) via state transition diagrams, directed graphs where the vertices correspond to regions
of phase space, and the edges indicate how regions are related by the dynamics. To aid the
reader the concepts of this section are illustrated in Figure 1 using a simple example of an
RN with two nodes and three edges (see Figure 1(a)). The associated switching system is
shown in Figure 1(b) based on the logical expression L(x1, x2) = x1 ∧ x2. We begin in section
3.1 by defining wall-labelings that encapsulate combinatorial information derived from the
κ-cell vector fields (6). In section 3.2 we give three different constructions of state transition
diagrams. In section 3.3 we show that these three constructions are equivalent in the sense
that they lead to equivalent dynamical information.

3.1. Wall-labelings. Faces of cells play a key role in our combinatorial representation of
the dynamical system (3). However, each such face has two adjacent cells and the κ-cell vector
fields on either side may differ. Accordingly we refine our concept of face to make reference
to one of the adjacent cells.

Definition 3.1. A wall is a pair (τ, κ) where κ is a cell and τ is a face of κ. Each wall
inherits the projection and switching indexes from the corresponding face τ of κ. We say the
sign of the wall (τ, κ) is 1 (and write sgn(τ, κ) = 1) if τ is a left face of κ and we say the sign
of the wall is −1 if τ is a right face of κ (and write sgn(τ, κ) = −1). For a fixed parameter
value z we denote the collection of walls by W(z).

Observe that given a wall (τ, κ) there are three possibilities with respect to the κ-cell
vector field fκ: it is everywhere tangential to τ ; it points out of κ everywhere on τ ; or it
points into κ everywhere on τ . If the projection index of τ is i, then these three cases are
determined by the sign of the expression fκi (τ) and whether the wall corresponds to a left
or a right face (i.e., the sign of the wall), which in turn can be determined as a function of
parameters. We summarize this in the following definition.D
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p1 p0

(a) (b) (c)

(d) (e) (f)

(g) (h)

ẋ1 = �x1 +

✓⇢
3 x1 > 1

1/2 x1 < 1

◆✓⇢
1/2 x2 > 1
1 x2 < 1

◆

ẋ2 = �x2 +

✓⇢
3 x1 > 2

1/2 x1 < 2

◆

1

2

Figure 1. (a) Regulatory network RN; (b) a set of equations with a particular choice of parameters for
RN; (c) phase space; (d) wall graph; (e) domain graph; (f) wall-domain graph; (g) a set of strongly con-
nected components of the wall, domain, or wall-domain graph; (h) Morse graph representing strongly connected
components.

Definition 3.2. Consider a switching network at a parameter value z ∈ Z. The wall-
labeling of W(z) is the function ` : W(z) → {−1, 0, 1} defined as follows. Let (τ, κ) ∈ W(z)
have projection index i and switching index j. Then define

(7) `((τ, κ)) := sgn(τ, κ) · sgn(fκi (τ)) = sgn(τ, κ) · sgn (−γiθj,i + Λi(κ)) .

Note the last equality follows since if x ∈ τ , then xi = θj,i.

Remark 3.3. As (7) makes clear the wall-labeling function depends explicitly on the choice
of parameters for the switching network. However, given any two parameter values for which
the ordering of the thresholds is the same there is an obvious identification of the cells and
walls. Using this identification, the wall-labeling is completely determined by the values of
sgn(fκi (τ)) over the collection of cells. As such we can define equivalence classes of parameter
values over which wall-labelings are constant.

Definition 3.4. A wall (τ, κ) is an outgoing wall if `(τ, κ) = −1, an incoming wall if
`(τ, κ) = 1, and a tangential wall if `(τ, κ) = 0.

For parameters in the set Z (i.e., regular parameters) we will have only outgoing and
incoming walls.
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2186 CUMMINS, GEDEON, HARKER, MISCHAIKOW, AND MOK

Proposition 3.5. Given a switching system with parameter z ∈ Z, there are no tangential
walls. That is, the wall-labeling function ` satisfies

`(τ, κ) 6= 0

for all (τ, κ) ∈ W(z).

The classification of walls according to the value of the wall-labeling function arises from
geometric considerations of the flows on the cells. We leave the proof of the following to the
reader.

Proposition 3.6. A cell κ is attracting if and only if every wall (τ, κ) ∈ W is an incoming
wall.

In Figure 1(c) there are six cells, and a schematic representation of the direction of the
flow in each cell is shown. The only attracting cell is the leftmost cell on the bottom, marked
with a red dot in center.

A stronger relation between the labeling of walls and the dynamics of the κ-equation is as
follows. Again the proof is left to the reader.

Proposition 3.7. Let x ∈ κ ∈ K(z) where z ∈ Z is a regular parameter value and let
ψκ denote the flow generated by (6). If κ is an attracting cell, then there exists a unique
time t−x < 0 such that ψκ((t−x ,∞), x) ⊂ κ and ψκ(t−x , x) ∈ τ̄ where (τ, κ) is an incoming
wall and τ̄ denotes closure of τ . If κ is not an attracting cell, then there exist unique times
t−x < 0 < t+x such that ψκ((t−x , t

+
x ), x) ⊂ κ, ψκ(t−x , x) ∈ τ̄ where (τ, κ) is an incoming wall, and

ψκ(t+x , x) ∈ τ̄ ′ where (τ ′, κ) is an outgoing wall.

3.2. State transition diagram constructions. Recall that a state transition diagram is
a directed graph. To emphasize that we employ this as a means of representing information
about dynamics we adopt an equivalent perspective: a state transition diagram is a combina-
torial multivalued map F : V ⇒ V (where V is the collection of vertices) such that ν ′ ∈ F(ν)
if and only if there is a directed edge ν → ν ′ in the state transition diagram. Using the
multivalued map notation the existence of a path from ν to ν ′ is expressed by ν ′ ∈ Fk(ν) for
some positive integer k.

Let ` be the wall-labeling for a switching network at a fixed parameter. We give three
constructions for state transition diagrams. In each case, note that the state transition dia-
grams depends only on `, and hence it is through the wall-labelling that the state transition
diagrams inherit their dependence on parameters. In fact, as indicated by Remark 3.3, this
inheritance remains constant on equivalence classes of parameter values.

Definition 3.8. The wall graph F : V ⇒ V induced by a fixed wall-labeling is defined as
follows. The set of vertices V is in 1-1 correspondence with the set of attracting cells and
faces of all cells. For each pair of faces τ , τ ′ admitting a cell κ such that (τ, κ) is an incoming
wall and (τ ′, κ) is an outgoing wall, there is an edge τ → τ ′, or equivalently τ ′ ∈ F(τ). For
each attracting domain κ, κ ∈ F(κ) and κ ∈ F(τ) for each wall (τ, κ).

Remark 3.9. A consequence of the assumption that the regulatory network does not have
any direct negative self-regulation (see Remark 2.2) is that every node in the wall graph has
an out-edge.
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The wall graph for the system in Figure 1(b) in shown in Figure 1(d). Each dark vertex
corresponds to a transparent wall, while the green vertex corresponds to a white wall. The
red vertex with a self-edge represents an attracting cell.

Definition 3.10. The domain graph F : V ⇒ V induced by a fixed wall-labeling ` is defined
as follows. The set of vertices V is in 1-1 correspondence with the collection of fundamental
domains K(κ). If some cell κ is an attracting domain, then κ ∈ F(κ). Furthermore, κ′ ∈ F(κ)
whenever there exists a face τ such that (τ, κ) and (τ, κ′) are walls such that `((τ, κ)) = −1
(indicating an outgoing wall of κ) and `((τ, κ′)) = 1 (indicating an incoming wall of κ′).

The domain graph for the system in Figure 1(b) is shown in Figure 1(e). Again, the red
vertex with a self-edge represents an attracting cell and teal vertices are nonattracting cells.

Definition 3.11. The wall-domain graph F : V ⇒ V induced by a given wall-labeling is
defined as follows. The set of vertices V is in 1-1 correspondence with the collection of all
cells and the faces of all cells. There are three types of edges. If (τ, κ) is an outgoing wall,
then τ ∈ F(κ). If (τ, κ) is an incoming wall, then κ ∈ F(τ). Finally, if κ is an attracting
cell, then κ ∈ F(κ).

The wall-domain graph for the system in Figure 1(b) is shown in Figure 1(f). The vertices
of this graph are the union of vertices of the wall graph (Figure 1(d)) and the domain graph
(Figure 1(e)) and their color matches their color in the original graphs. Except for the self-
edge on the vertex corresponding to the attracting cell the graph is bipartite; edges connect
wall vertices to domain vertices and domain vertices to wall vertices.

3.3. Dynamical signatures. As indicated in the introduction, to store the dynamics we
make use of a more compact representation.

Definition 3.12. A recurrent component (also referred to as a strongly connected path
component) of a directed graph F is a maximal collection C of vertices such that for any
u, v ∈ C there exists a nonempty path from u to v in C. In the context of dynamical systems
we refer to a recurrent component of F as a Morse set of F and denote it by M ⊂ V. The
collection of all recurrent components of F is denoted by

MD(F) := {M(p) ⊂ V | p ∈ P}
and is called a Morse decomposition of F . Here P is an index set. Recurrent components
inherit a well-defined partial order by the reachability relation in the directed graph F . Specif-
ically, we may write the partial order on the indexing set P of MD(F) by defining

q ≤ p if there exists a path in F from an element of M(p) to an element of M(q).

Primarily for clarity we note the following facts regarding recurrent components.

Proposition 3.13. Two elements ν, ν ′ ∈ V belong to the same recurrent component of F if
and only if there exist positive integers k, k′ such that ν ′ ∈ Fk(ν) and ν ∈ Fk′(ν ′). Distinct
recurrent components are disjoint. Not every vertex need belong to some recurrent compo-
nent. Recurrent components are strongly connected components. The only strongly connected
components that are not recurrent components are singleton sets that do not have a self-edge.

Definition 3.14. The Morse graph of F , denoted MG(F), is the Hasse diagram of the poset
(P,≤). We refer to the elements of P as the Morse nodes of the graph.
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2188 CUMMINS, GEDEON, HARKER, MISCHAIKOW, AND MOK

Figure 1(g) shows the strongly connected components of either of the three graphs (wall
graph, domain graph, and wall-domain graph) in Figures 1(d), (e), and (f), respectively. The
Morse graph representation of the strongly connected components is in Figures 1(g) and (h).
The two Morse sets are not comparable and so the partial order P is empty.

We note that the computation of Morse graphs is feasible and can be accomplished via
well-known algorithms for strongly connected components [43] and transitive reduction [1].
In particular, for a directed graph with E vertices and V edges, we may compute strongly
connected components in O(E) time and the reachability relation among strongly connected
components in O(EV ) time. In our setting, the number of edges is proportional to the number
of vertices (i.e., E < 2dV ). For the worst case of O(V ) recurrent components this results in
quadratic performance. However, if the number of recurrent components is small (as we
frequently observe) this becomes a linear time procedure.

Proposition 3.15. The Morse graphs induced by the wall graph, the wall-domain graph, and
the domain graph are isomorphic.

Proof. In the wall graph, every incoming face maps to every outgoing face. Meanwhile in
the wall-domain graph every incoming face maps to the cell, which then maps to each of its
exit faces. It follows that the reachability between faces in the wall graph and the wall-domain
graph is the same. What is more, every recurrent component in the wall graph either contains
a face or else is an attracting domain. From this one may establish the isomorphism between
the Morse graph of a wall graph and the Morse graph of the wall-domain graph. Establishing
the isomorphism of Morse graphs induced by the wall-domain graph and the domain graph is
similar: we observe that the reachability between fundamental domains is the same in either
and that each recurrent component must contain at least one domain. Combining these two
isomorphisms gives the isomorphism from wall graph to domain graph.

In light of the previous result and the simplicity of the domain graph one might wonder
why we should bother with the wall graph or wall-domain graph at all. The answer is twofold.
First, it is possible to refine our analysis so that in the wall graph not every incoming face
(τ, κ) is mapped to every outgoing face (τ ′, κ) for a cell κ. For example, consider Figure 2. In
(a), we see the wall graph obtained in the present work in the situation of a two-dimensional
cell with two incoming and two exit faces arranged as indicated. However, for a particular
parameter the actual trajectories would be captured to the diagrams sketched in (b) and (c).
To achieve combinatorial descriptions capturing the additional information in (b) or (c) the
domain graph is inadequate and it will be necessary to use notions such as the wall graph.
We leave this to future work.

The idea of using symbolic representation of the dynamics of switching systems motivated
the introduction of these systems in the 1970s [27, 28]. Our concept of a domain graph is
analogous to the state transition diagram in these papers. The representation of dynamics by
maps between walls, in a different context, has been used before [29, 17, 21, 16, 24].

Second, via more sophisticated constructions of the directed graph we can obtain infor-
mation about unstable dynamics from the Morse graph. These constructions involve using
lower-dimensional cells such as faces as vertices and will be detailed in a future work.

3.4. Annotation of Morse nodes. In addition to recording the Morse graph for a param-
eter z ∈ Z it is possible to produce extra information in the form of annotations we associate
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(a) (b) (c)

Figure 2. (a) Coarse wall graph where all incoming faces map to all exit faces. (b) Finer wall graph with
a disallowed incoming-exit arrow from bottom to top. (c) Finer wall graph with disallowed arrow from left to
right.

with the Morse nodes of the Morse graph. We refer to this information, Morse graphs plus
annotations, as a dynamical signature. Presently, we compute annotations for each Morse
node based on the vertices present in the associated Morse set. We briefly describe these
annotations. First, we say that a Morse set makes an xd transition if it contains vertices cor-
responding to cells with differing xd coordinates. We make annotations according to the set
of transitions. In the simplest case, there are no transitions (we have only a single attracting
cell) and we annotate the Morse set as a fixed point but respecting three subcases: (a) if
the cell is located to the left of each threshold in all dimensions the Morse node is marked
FP OFF (fixed point off ); (b) if the cell is located to the right of at least one threshold in each
dimension it is marked FP ON (fixed point on); (c) otherwise it is marked just FP. In the
other extreme case every transition is made (i.e., x1, x2, . . . , xN ). In this case we annotate
the Morse node FC (for full cycle). Otherwise we annotate the Morse node according to the
subset of variables for which there is a transition.

4. Parameter graph. The content of sections 2 and 3 implies that given a regulatory
network RN and a parameter z ∈ Z for the associated switching system (3) it is possible to
create an annotated Morse graph.

Since two parameters z, z′ ∈ Z give rise to the same annotated Morse graph provided
they give rise to the same wall-labeling (up to the equivalence indicated in Remark 3.3) it
is natural to discretize parameter space according to regions that are guaranteed to give the
same wall-labeling. How to accomplish this is the topic of this section. As indicated in the
introduction, the final results are parameter graphs that are defined below.

The nodes of a parameter graph, which we denote by Z, are meant to correspond to
regions in parameter space and the edges are meant to indicate geometric relations between
the regions. The resulting database of dynamic signatures can be viewed as a map

DB : Z → AnnMG,

where AnnMG denotes the collection of annotated Morse graphs. As indicated in section 5, in
applications queries to the database are often concerned with finding the set of nodes which
correspond to a particular annotated Morse graph.

We remark that the parameter space Z ⊂ [0,∞)D, as defined in Definition 2.7, is a semi-
algebraic set, i.e., it is expressed in terms of polynomial inequalities. To see this note that by
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Definition 2.3, Z̄ is a semialgebraic set and Z is the complement in Z̄ of the set of parameters
that satisfy any one of the equalities

0 = lj,i − uj,i,
0 = γi, 0 = θj,i, 0 = lj,i, 0 = uj,i,

0 = θj,i − θj′,i for distinct j, j′ ∈ T(i), or(8)

0 = γiθj,i − Λi(κ), where θj,i defines a face of κ,

where κ ∈ K(z) and by Remark 2.8 Λi(κ) can be expressed as a sum of monomials involving
parameters.

We propose two conceptually different means of identifying Z with Z. In section 4.1 we
describe an approach based on topological considerations; the basic elements are connected
components of Z and their adjacency structure is defined in terms of closures of these sets.
This gives rise to the GPG.

In section 4.2 we describe an approach that is explicitly computable; we consider subsets of
Z described by systems of strict inequalities. We define an adjacency structure by considering
reversing the direction of these inequalities one at a time. This gives rise to the CPG.

In section 4.3 we present a decomposition of the geometric and combinatorial parameter
graphs as a product of smaller graphs in a way which corresponds to the structure of the
regulatory network. In section 4.5 we compare the GPG and CPG graphs. There is a canonical
graph homomorphism h : GPG → CPG induced from inclusion, but it is an open question
whether this homomorphism is in fact always an isomorphism (i.e., we have not proven in
general that these two approaches are equivalent). We are, however, able to give a class of
networks for which GPG and CPG are known to be the same. Finally, in section 4.4 we will
discuss the computation of CPG.

4.1. Geometric parameter graph. Because we are using the domain graph the state
transition diagram F(·, z) : V ⇒ V is defined for each z ∈ Z and is completely determined
by the wall-labeling (7). The ordering O and the wall-labeling are constant on connected
components of Z. This motivates a combinatorialization of parameter space via the connected
components, which we label by Z. With this in mind we define the parameter nodes of the
GPG to be Z. To complete the definition of the GPG we require a notion of adjacency for
parameter nodes.

Definition 4.1. We say that a parameter value z ∈ Z̄ is k-deficient if exactly k of the
equalities of (8) are satisfied. Given a switching network (1) the associated GPG has vertices
Z and edges (ζ, ζ ′) if there exists z ∈ cl(ζ)∩ cl(ζ ′) such that z is 1-deficient. Here the closures
cl(ζ) and cl(ζ ′) are taken in Z̄.

Open Question 4.2. Does the concept of k-deficient parameter values naturally generate a
regular CW-decomposition of Z̄ where the elements of Z represent the cells of dimension D?

Adjacency in the GPG is meant to correspond to cells that share a D−1 dimensional face.
Extending this construction would provide a means of understanding the topology of regions
of parameter space that are associated with specified dynamic phenotypes.

The following example illustrates the concept of the GPG.
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x

(a)

x
0 θκ1 κ2

(b)

FP OFF

MG(1)

FP OFF FP ON

MG(2)

FP ON

MG(3)

(c)

0 < l < u < γθ

PN(1)

0 < l < γθ < u

PN(2)

0 < γθ < l < u

PN(3)

(d)

Figure 3. (a) A self-activating one-node network. (b) Phase plane for switching network. (c) Annotated
Morse graphs: MG(1) has a single node generated by an attracting cell for which the fixed point is less than
the threshold and annotated by FP OFF; MG(3) has a single node generated by an attracting cell for which the
fixed point is greater than the threshold and annotated by FP ON; and MG(2) has two minimal nodes generated
by attracting cells in one of which the fixed point is less than the threshold and in the other the fixed point is
greater than the threshold. (d) Parameter graph.

Example 4.3. Consider the simplest regulatory network RN = (V,E), where V = {1},
1 → 1, and M1(x) = x. The regulatory network is shown in Figure 3(a). Since the 1 → 1
edge is activating, the associated switching network takes the form

(9) ẋ = −γx+

{
l if x < θ,

u if x > θ.

The associated phase space and subdivision are shown in Figure 3(b).
In particular, there are two cells κ1 := (0, θ) and κ2 := (θ,∞). The dimension of the

associated parameter space is D = 1 + 3 = 4 and

Z = {(l, u, θ, γ) | l < u, γθ /∈ {l, u}} ⊂ [0,∞)4.

Because of the simplicity of the problem, it is easy to enumerate all the state transition
diagrams and compute the associated Morse graphs. Figure 3(c) indicates the annotated
Morse graphs. Without the annotations Morse graphs MG(1) and MG(3) are equivalent and
consist of a single node. However, in the process of the computation we can identify that
the fixed point is in κ1 is less than the threshold; thus the node x is in an “off” state. We
denote this information by FP OFF. The annotated Morse graph includes this information at
the node. Similarly, the annotated Morse graph MG(3) indicates that the fixed point is in
κ2. We denote this information by FP ON. The Morse graph MG(2) has two minimal nodes
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generated by two attracting cells in one of which the fixed point is less than the threshold
and in the other the fixed point is greater than the threshold. Again these fixed points are
annotated FP OFF and FP ON, respectively.

The associated regions of parameter space, i.e., their defining inequalities, are indicated
in Figure 3(d). Observe that there is a straight line in PN(i) from any point in PN(i) to
the origin. Thus one can show that each region PN(i) is connected. Thus, the GPG contains
three nodes. Observe that if z ∈ Z̄ satisfies γθ − u = 0, then z ∈ cl(PN(1)) ∩ cl(PN(2)),
and similarly, if z ∈ Z̄ satisfies γθ − l = 0, then z ∈ cl(PN(2)) ∩ cl(PN(3)). Thus, we
have an edge between the nodes corresponding to PN(1) and PN(2) and an edge between
the nodes corresponding to PN(2) and PN(3). Therefore, Figure 3(d) is the GPG for this
example.

How to extend these arguments in Example 4.3 to more complicated regulatory networks
is not obvious. However, consider Z ′ :=

{
(l, u, θ) ∈ [0,∞)3 | (l, u, θ, 1) ∈ Z

}
⊂ [0,∞)3 and

observe that characterizing Z ′ is equivalent to characterizing the complement of the degenerate
finite hyperplane arrangement [41]

{{
v ∈ [0,∞)3 | a · v = 0

}
| a ∈ A

}
,

where
A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1)} .

In this setting it is fairly easy to determine that Z ′ consists of three unbounded connected
components for which the origin is contained in their closures. However, we are interested in
characterizing all of Z, which implies that we need to consider complements of the nonlinear
equations −γθ + l = 0 and −γθ + u = 0. For a general regulatory network the dimension
D grows linearly in the number of vertices and edges and the terms of Λ, while multilinear,
may consist of higher dimensional products of the parameters. This implies that the problem
of understanding Z is at least as challenging as that of determining the cells in a degenerate
finite hyperplane arrangement. To deal with these complications, in the next subsections we
turn to techniques from computational algebraic geometry. For now we content ourselves with
the following result.

Proposition 4.4. The GPG is a connected graph.

Proof. Our proof is based on finding a straight line path between points in any two param-
eter nodes from which we can prove the existence of a corresponding path in the GPG. The
burden is to show we can avoid pathologies where the straight line path (a) passes through an
accumulation of parameter nodes or (b) passes from one parameter node to another through
a point which is not 1-deficient. Since the parameter nodes are all in the strictly positive or-
thant, we only need to consider deficiencies arising from one of the following equalities being
satisfied (the other equalities of (8) do not intersect the strictly positive orthant and need not
be considered):

0 = lj,i − uj,i,
0 = θj,i − θj′,i for distinct j, j′ ∈ T(i), or(10)

0 = γiθj,i − Λi(κ) where θj,i defines a face of κ.D
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Each of the equalities in (10) has a solution set in (0,∞)D (for D := N + 3 ·#(E)) which
we show is a codimension-1 submanifold. To see this, let f1, f2, . . . , fk : (0,∞)D → R be the
functions such that the equalities of (10) may be written fi = 0 for i = 1, 2, . . . , k, where k is
the number of equalities in (10). We leave it to the reader to inspect (10) and see that the
gradient of each fi (for each i = 1, 2, . . . , k) is nonvanishing, i.e., 0 is a regular value of fi.
By the regular value theorem, the varieties f−1i (0) are thus codimension-1 submanifolds Si of
(0,∞)D for i = 1, 2, . . . , k.

We consider a collection of line segments L = La ∪ Lb, where La denotes the collection
of line segments which intersect

⋃k
i=1 Si infinitely often, and Lb denotes the collection of line

segments which intersect
⋃
i 6=j Si ∩ Sj (i.e., any two of the submanifolds at the same point).

Describing line segments by their endpoints we regard L as a subset of (0,∞)2D. We make
the following technical claim: L is a set of zero measure. We show this by proving that both
La and Lb have zero measure. Note this corresponds to showing the pathologies (a) and (b)
are rare.

To see that La has zero measure, observe first that the union of finitely many codimension-
1 submanifolds

⋃k
i=1 Si has measure zero. It follows that the collection of line segments with

either endpoint in
⋃k
i=1 Si has measure zero. For any line segment with endpoints p and q

which are both not in
⋃k
i=1 Si, we consider its parameterization s : [0, 1]→ (0,∞)D defined by

s(t) := (1− t)p+ tq. The compositions fi(s(t)) are polynomials in t which are not identically
zero. By the Fundamental Theorem of Algebra they each have a finite number of zeroes. Since
the zeros correspond to the intersections of the segment with the submanifolds, the segments
are not in La. It follows that La has measure zero.

To see that Lb has zero measure, define fij : (0,∞)D → R2 via fij(x) := (fi(x), fj(x))
for i 6= j. We leave it to the reader to inspect (10) and verify that since for i 6= j the set
of variables appearing in the expressions for fi(x) and fj(x) are not the same, the gradients
∇fi|p and ∇fj |p are linearly independent for any p ∈ (0,∞)D, i.e., the Jacobian Dfij |p has
full rank. Thus 0 is a regular value of fij . By the regular value theorem, Si ∩ Sj = f−1ij (0) is

a codimension-2 submanifold of (0,∞)D. It follows that the set of line segments intersecting
Si ∩ Sj for some i 6= j is measure zero. Hence Lb has measure zero.

Consequently, we may always perturb a line segment by making arbitrarily small adjust-
ments to the location of its endpoints so that it intersects the submanifolds defined by (8)
finitely often and never intersects two submanifolds at the same point. Now choose ζ, ζ ′ ∈ GPG
and let p : [0, 1]→ Z̄ be a straight line path such that p(0) ∈ ζ and p(1) ∈ ζ ′. Since ζ and ζ ′

are open, there exist neighborhoods in which we may perturb p(0) ∈ ζ and p(1) ∈ ζ ′; we use
this freedom so we can assume without loss of generality that the line segment p([0, 1]) satis-
fies this technical property. By the first technical condition p(t) ∈ Z for all but finitely many
t ∈ [0, 1] there exists a finite sequence (ζ0 = ζ, ζ1, ζ2, . . . , ζn = ζ ′) through GPG correspond-
ing to a finite sequence of intervals [t0 = 0, t1), (t1, t2), . . . , (tn, tn+1 = 1] in [0, 1] for which
p((ti, ti+1)) = ζn. By the second technical condition, p(t) intersects only one submanifold at a
time, hence for each i = 1, . . . , n the point p(ti) is a 1-deficient point in the intersection of the
closures of ζi−1 and ζi. These facts together yield a path ζ = ζ0 → ζ1 → ζ2 → · · · → ζn = ζ ′.
Hence GPG is connected.
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4.2. Combinatorial parameter graph. In this section we show how to assign to each
parameter z ∈ Z a combinatorial description φ which is sufficient to construct the wall-labeling
(and hence state transition diagrams) induced by z. We call this combinatorial description
a combinatorial parameter and we denote the collection of combinatorial parameters by Φ.
Importantly, we show that for every parameter node ζ ∈ Z, for any z, z′ ∈ ζ, both z and z′

have the same associated combinatorial parameter φ ∈ Φ.
Our definition of combinatorial parameters is unfortunately somewhat technical. Overall

it amounts to a bookkeeping system to keep track of the directions of the inequalities involving
parameters which determine the threshold order and wall-labeling function. The threshold
orderings give rise to inequalities comparing θ parameters. To determine the wall-labeling
function requires comparing the various Λi to γiθj,i (which gives the signs in (7)). For a
given regulatory network a fixed number of such comparisons are required; our definition of a
combinatorial parameter provides an organizational framework to speak of this collection of
inequalities in a rigorous way.

Definition 4.5. Define the input combinations of the node xi to be the Cartesian product

Inj :=
∏

i∈S(j)

{off, on}.

Define the indicator function χj : (0,∞)N → Inj such that

χj,i(x) =





off if i→ j and xi < θj,i or if i a j and xi > θj,i,

on if i→ j and xi > θj,i or if i a j and xi < θj,i,

undefined otherwise.

Define the valuation function vj : Inj → RSj via

vj,i(A) =





lj,i whenever Ai = off,

uj,i whenever Ai = on,

undefined otherwise.

Note that σj = vj ◦ χj, where σj is defined in (5).
Define the output combinations of the node i to be the set

Outi := T(i),

where we recall from Definition 2.1 that T(i) is the set of target nodes of i in the regulatory
network RN.

Definition 4.6. A logic parameter is a function

L :
N⊔

i=1

(Ini × Outi)→ {−1, 1}.

We denote the restriction of L onto Ini×Outi as Li. An order parameter O is a collection of
total orderings Oi of T(i) for each i ∈ X. A combinatorial parameter is a pair φ = (L,O),
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where L is a logic parameter and O is an order parameter. We denote the collection of
combinatorial parameters as Φ. The combinatorial assignment function ω : Z → Φ is given
by ω(z) := (L,O), where O = O(z) and

(11) Li(A,B) = sgn (Mi ◦ vi(A)− γiθB,i) for all 1 ≤ i ≤ N .

For all z ∈ Z, we say that ω(z) is the combinatorial parameter associated to the parameter
z.

The parameter region associated with the combinatorial parameter φ is given by ω−1(φ) ⊂
Z and denoted by |φ|. A combinatorial parameter φ ∈ Φ is realizable if there exists z ∈ Z
such that φ = ω(z).

Definition 4.7. Let φ = (L,O) ∈ Φ be a combinatorial parameter. Suppose z ∈ Z such
that O = O(z). We may induce a wall-labeling on W(z) as follows. Let (τ, κ) be a wall with
projection index i and switching index j. We say (τ, κ) is an outgoing wall with respect to φ
if Li(χi(κ), j) = − sgn((τ, κ)) and an incoming wall if Li(χi(κ), j) = sgn((τ, κ)).

The next result shows we have successfully given a combinatorial description φ = ω(z) for
each z ∈ Z.

Proposition 4.8. Let z ∈ Z. Define φ ∈ Φ such that φ = ω(z). Then the wall-labeling
induced by z and the wall-labeling induced by φ are the same.

Proof. It suffices to show φ and z induce the same wall-labeling, which then in turn will
induce the same wall graph. To this end it suffices to show for each wall (τ, κ) with projection
index i and switching index j that (1) Li(χi(κ), j) = +1 is equivalent to Mi(σi(κ)) > γiθj,i,
and (2) Li(σi(κ), j) = −1 is equivalent to Mi(σi(κ)) < γiθj,i. This follows from the definitions
and (11).

We supplement combinatorial parameters with a notion of adjacency. To understand this
notion of adjacency it helps to remember that a combinatorial parameter is nothing more than
a bookkeeping system giving the direction of the inequality for a set of inequalities describing
a region of parameter space. Our notion of adjacency corresponds to reversing a single one of
these inequalities.

Definition 4.9. Let φ = (L,O), φ′ = (L′, O′) ∈ Φ be distinct combinatorial parameters.
Denote the domains of L and L′ by D :=

⊔N
i=1 (Ini × Outi). We say φ and φ′ are adjacent if

either (1) O = O′ and there exists x ∈ D such that φ and φ′ are equal on all of D except x,
or (2) L = L′, Oi = O′i for i ∈ V \ i∗, and the total orders Oi∗ and O′i∗ differ only by a single
swap of the ordering of consecutive thresholds.

The previous definition renders Φ into a large graph of combinatorial parameters. Since
not every combinatorial parameter is realizable (i.e., in the image of ω) we are interested only
in a subgraph.

Definition 4.10. The CPG is the undirected graph on the realizable combinatorial parameters
with an edge between two parameter nodes φ and φ′ if and only if they are adjacent in the
sense of Definition 4.9.

Example 4.11. To illustrate the idea of the combinatorial parameter graph, we return to
the one-node regulatory network, indicated in Figure 3(a), of Example 4.3. Recall that the
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switching network is (9), the phase space is indicated in Figure 3(b), and Figure 3(c) indicates
the annotated Morse graphs. For the purposes of this example it is instructive to construct
the collection of combinatorial parameters Φ and see which ones are realizable. There is only
a single node, so

In = {off, on} and Out = {1}
and the order parameter is similarly trivial O = {θ}. The set of logic parameters is

(off, 1) 7→ −1 and (on, 1) 7→ −1,(12)

(off, 1) 7→ 1 and (on, 1) 7→ −1,(13)

(off, 1) 7→ −1 and (on, 1) 7→ 1,(14)

(off, 1) 7→ 1 and (on, 1) 7→ 1,(15)

and therefore Φ contains four elements.
To determine the realizable combinatorial parameters we note that the indicator function

χ : (0,∞)→ In is

χ(x) =





off if x < θ,

on if θ < x,

undefined otherwise

and the valuation function v : In→ R is

v(A) =

{
l if A = off,

u if A = on.

Note that M is the identity and thus to understand the image of the combinatorial assignment
function ω : Z → Φ we only need to consider

L(A,B) = sgn (v(A)− γθ) .

Observe that if A = off, then

L(off, 1) = sgn (l − γθ) =

{
−1 if l < γθ,

1 if γθ < l,

and if A = on, then

L(on, 1) = sgn (u− γθ) =

{
−1 if u < γθ,

1 if γθ < u.

Observe that if l < u < γθ, l < γθ < u, and γθ < l < u, then we obtain the combinatorial
parameters with logic parameters (12), (14), and (15), respectively. Notice that the combina-
torial parameter with logic parameter (13) is not realizable since it would require γθ < l and
u < γθ, which contradicts l < u. Thus CPG has three nodes. The edges are as indicated in
Figure 3(d), since these correspond to the switching of a single inequality. Thus, as promised
(see Theorem 4.18) the CPG agrees with the GPG of Example 4.3.
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4.3. Product structure of parameter graph. Both GPG and CPG have a product struc-
ture. To describe this structure we need to define what is meant by a product of graphs.

Definition 4.12. Given a collection of graphs {Gα}α∈J the graph product
∏
α∈J Gα is the

graph with nodes which are J-tuples x such that xα ∈ Gα for α ∈ J and two J-tuples x and y
are adjacent if and only if xα = yα for all but possibly one exceptional value α∗ ∈ J , and for
that exceptional α∗, xα∗, and yα∗ are adjacent in Gα∗.

Definition 4.13. For each i ∈ V , define the geometric factor graph GPGi to be the connected
components of the complement of the solutions of the equalities

0 = lj,i − uj,i,
0 = γi, 0 = θj,i, 0 = lj,i, 0 = uj,i,

0 = θj,i − θj′,i for distinct j, j′ ∈ T(i), or

0 = γiθj,i − Λi(κ), where θj,i defines a face of κ,

in
Zi := {(l, u, θ, γ) ∈ [0,∞)1+3#T(i)}.

Two connected components are considered to be adjacent if they admit a 1-deficient point in
the intersection of their closures.

Definition 4.14. Let i ∈ V . Define Φi to be the collection of pairs (Li, Oi), where Oi is an
ordering of T(i) and Li is a function

Li : Ini × Outi → {−1, 1}.

Define a function ωi : Zi → Φi via ω(z) := φi = (Li, Oi) whenever

(16) Li(A,B) = sgn (Mi ◦ vi(A)− γiθB,i) .

We say two elements φi, φ
′
i ∈ Φi are adjacent if they differ in only one value. We say φi

is realizable if ω−1i (φi) is nonempty. We denote the subgraph of realizable elements in Φi as
CPGi and call it the combinatorial factor graph.

Theorem 4.15. For either PG = GPG or PG = CPG, we have the following factor decom-
position:

PG =
N∏

i=1

PGi.

Proof. We show it first for the GPG. First we demonstrate a one-to-one correspondence
between the vertices of

∏
GPGi and GPG. Observe that Z =

∏
Zi. By straightforward

topological arguments a connected component in Z is a product of connected components of
Zi and vice versa. This establishes a one-to-one correspondence of vertices between

∏
GPGi

and GPG. Now we show that vertices ζ, ζ ′ are adjacent in GPG if and only if they are adjacent
in
∏

GPGi. Assume first that ζ and ζ ′ are adjacent in GPG. Then there exists a 1-deficient
point in the intersection of their closure. At all such 1-deficient points there is a single equality
of (8) which is satisfied; it involves parameters corresponding to a definite factor GPGi for some
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i. For all but a single exceptional i = i∗ we have πi(ζ) = πi(ζ
′) and in the exceptional case

πi∗(ζ) and πi∗(ζ
′) are adjacent in GPGi∗ . By Definition 4.12 this means ζ and ζ ′ are adjacent

in
∏

GPGi. The converse more or less runs this argument in reverse. Hence GPG =
∏

GPGi.
Next we show CPG =

∏
CPGi. In this case it follows very immediately from the definitions;

Φ =
∏

Φi and the definition of adjacency in Definition 4.9 is compatible with Definition 4.12.
What remains is to see that a combinatorial parameter φ is realizable only if φi is realizable
for all i ∈ V . To this end we leave it to the reader to verify from the definitions that
ω−1(φ) =

∏
ω−1i (φi), from which the result follows.

The utility of this decomposition theorem is that it allows us a way of understanding
parameter space piecewise; given a network we can consider a single node i that has n = #S(i)
inputs, m = #T(i) outputs, and an associated logic function Mi. Given these three things we
may construct the factor graph. Thus, we can store a library of such factor graphs once and
for all, and given a network we can immediately understand the combinatorial decomposition
of parameter space by assembling this product structure.

4.4. Computation of parameter graph. Theorem 4.15 allows us to construct parameter
graphs as products of factor graphs, so the problem of computing a parameter graph reduces
to the problem of constructing the factor graphs. In light of Proposition 4.4 the factor graph
is connected so we may explore it, and hence construct it, via any graph traversal technique,
e.g., breadth-first-search, depth-first-search. To use this approach we require two ingredients:
we must have a starting point, and we must be able construct the list of adjacent parameters.

For a starting point we may choose the combinatorial parameter φ = (L,O), where L ≡ −1
and O may be chosen freely. This is guaranteed to be realizable: we obtain a realization if we
choose u, l, and γ values freely and then choose θ values in the desired ordering and sufficiently
large so that Λi < γiθj,i for all (i, j) ∈ E.

To compute adjacency lists we first obtain from Definition 4.9 a list of candidate ad-
jacent combinatorial parameters in Φ. Not every candidate adjacency is in CPG since not
every combinatorial parameter is realizable. To obtain the adjacencies we filter the list of
candidates in search of the realizable combinatorial parameters. In particular, we employ the
computational algebra technique CAD [15], which provides a finite, recursive description of
the geometric region ζ ′ associated with each candidate adjacent combinatorial parameter φ′

(i.e., ζ ′ = ω−1(φ′)). Since ζ ′ is given in terms of strict inequalities, we use the algorithm of
[42] as implemented in Mathematica.

These algorithms can be quite expensive (worst-case bounds are doubly exponential in the
number of variables) but are tractable for networks built out of components given in Table 1.
From a CAD description of ζ ′ we can determine if it is empty and hence if φ′ is realizable. If
it is, then ζ ′ is added into the list of adjacent vertices of CPG.

In this manner we can traverse the graph and construct the factor graphs and hence the
graph. Note that given a network component there is an #T(i)!-fold symmetry due to the
number of possible rearrangements of the θ variable orderings. This can be used to reduce
the number of CAD calculations; in particular we can compute the parameter graph only
for a single ordering of thresholds and from this we can extrapolate the rest of the factor
graph via symmetry in a straightforward manner. In particular, we can make a disjoint union
of #T(i)! independent copies of the graph and then connect them together via adjacencies
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corresponding to swapping threshold orderings whenever none of the Λ values are between
them.

Remark 4.16. As noted above CAD computations can be quite expensive. Currently we
know of no general way of constructing a CPG graph without using CAD unless we are
content with performing computations for combinatorial parameters which are not realizable,
i.e., do not correspond to some actual parameter z ∈ Z. This may seem like a defect of this
approach but we should emphasize that these CAD computations do not need to be repeated
for each network we analyze. Rather, we construct a library of CAD results corresponding to
each single node in a network with a given number of inputs, number of outputs, and logic.
From this library of CAD computations we may analyze any network which may be built up
from these components without doing any further computational algebraic geometry. Because
this library has been constructed for all nodes of the form in Table 1, we may analyze any
network built out of components with these node types without performing any additional
CAD computations. The Mathematica scripts we executed to produce our library of CAD
results may be found in the DSGRN software package [32].

4.5. Relationship between geometric and combinatorial parameter graphs. For all
z, z′ ∈ ζ ∈ GPG, ω(z) = ω(z′), there is a well-defined map

h : GPG→ CPG

such that ζ 7→ ω(ζ). Moreover, the existence of a 1-deficient point in the intersection of
the closures of the connected components ζ, ζ ′ ∈ Z immediately implies h(ζ) and h(ζ ′) are
described by sets of inequalities which differ by only a single inequality reversal and hence are
adjacent in CPG. This renders h into a graph homomorphism as it maps vertices to vertices
and edges to edges. Note that h behaves nicely with the product structure indicated in the
previous section.

Open Question 4.17. Is h in general an isomorphism?

An answer to the question ultimately comes down to two issues: (1) Are the geometric
regions associated with the realizable combinatorial parameters connected? (2) Do the geo-
metric regions associated with adjacent vertices of CPG always admit a 1-deficient point in
the intersection of their closures? While we cannot at this time answer these questions in
complete generality, we do have the following result and a method for checking specific cases.

Theorem 4.18. The homomorphism h is an isomorphism for regulatory networks for which
each node in the regulatory network is described by an entry of Table 1.

Proof. By Theorem 4.15 it suffices to consider only the factor graphs; all that we must
show is that

GPGi ' CPGi.

This in turn becomes a finite computation for each entry of Table 1. In particular we use
CAD to show the following:

1. For each φi ∈ CPGi, the associated geometric region is connected.
2. For each pair of adjacent φi, φ

′
i ∈ CPGi, the associated geometric regions admit a 1-

deficient point in the intersection of their closures.
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For (1), observe that each node φi in CPGi is associated with a parameter region |φi| in Z
defined by a collection of polynomial inequalities. These inequalities are obtained by writing
threshold inequalities θj1,i < θj2,i according to the threshold ordering Oi and by writing either
Mi ◦ vi(A) < γiθB,i or Mi ◦ vi(A) > γiθB,i for each (A,B) ∈ Ini × Outi according to the sign
of Li(A,B).

For (2), we consider the inequalities associated with adjacent parameters φi and with φ′i
in CPGi. These two sets of inequalities are identical apart from a single inequality with its
sign flipped. Dropping this inconsistent inequality yields a set of inequalities I describing a
region in Z̄i which contains the union of |φi| and |φ′i|. Since all the inequalities are strict, the
solutions of I make up an open set. If this open set is connected, then as an open subset
of Euclidean space it is also path-connected; in particular take any path from a point in |φi|
to a point in |φ′i| in |I|. By the intermediate value theorem it must pass through a point
where equality is obtained on the inequality φi and φ′i disagree on (but on none of the other
inequalities). Thus we have identified a 1-deficient point on the intersection of the closures of
|φi| and |φ′i|.

Using Mathematica, we have performed these connectedness computations and verified
(1) for each vertex and (2) for each adjacency of the factor graphs corresponding to network
components indicated in the rows of Table 1. The scripts which accomplish these computations
may be found in the DSGRN software package [32].

5. Applications. We demonstrate the use of the DSGRN database with two elementary
three-node networks, the repressilator and bistable repressilator models, and an example as-
sociated with the p53 network. These databases, along with a growing number of other
examples, can be found at the DSGRN database [32].

5.1. The repressilator. We begin with the repressilator as shown in Figure 4(a) for two
reasons: first, it is of biological interest in that it has been constructed in E. coli by [22], and
second, it is extremely simple as it consists of three genes that repress each other in a cycle
and thus we can draw the entire parameter graph (see Figure 5).

Applying Definition 2.4 the switching equations for the repressilator take the form

ẋ1 = −γ1x1 + σ−1,3(x3),

ẋ2 = −γ2x2 + σ−2,1(x1),(17)

ẋ3 = −γ3x3 + σ−3,2(x2),

where the notation for the nonlinearities σ follows the notation of (5). We write σ− as a
reminder that the interaction represents repression, the second choice in (5).

1 2

3

1 2

3

Figure 4. Left: Repressilator. Right: Bistable repressilator.
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0

1 3 9

13

14 16 22

26

2 4 106 12 18

5 117 19

8 20

15 21

17 23

24

25

MG:  FP  FP OFF  FC  FP ON 

0 5 10 15 20 25 30
0.7

0.8

0.9

1.0

1.1

1.2
x1 x2 x3

Figure 5. Left: Repressilator parameter graph with same-colored parameter nodes corresponding to the
same Morse graph. Right: Hill function simulation for the repressilator satisfying the inequalities of parameter
node 13 with li,j = 0.5, θi,j = 1.0, ui,j = 1.5 (see (21)). The Hill exponent is n = 9.

The repressilator model has a single regulatory threshold for each variable, dividing the
phase space (which is the positive orthant of R3) into 8 cells and 12 walls. The domain
and wall graphs from section 3.2 vary with parameter choice and therefore we start with a
discussion of the space of parameters and the parameter graph.

For each i the function σ−i+1,i representing the edge i→ i+ 1 is parameterized by three pa-
rameters ui+1,i, li+1,i and θi+1,i (i is taken mod 3). In addition there are three decay constants
γ1, γ2, γ3. Therefore the parameter space Z ⊂ Z̄ ⊂ R12. To determine the parameter graph
we first construct the combinatorial parameter graph CPG using the factor decomposition
theorem, Theorem 4.15. For each factor of the CPG we use Table 1. Since the repressilator
model has a single threshold for each variable, the threshold orders Oi as in Definition 4.14
are trivial. The choice of logic Mi (see (4)) is also trivial. Therefore for each i = 1, 2, 3 we
consider the network node component in the first row in Table 1. The last column of the table
shows that #PGi = 3 for each variable xi. To make this explicit, for variable x2 these choices
correspond to

l2,1 < u2,1 < γ1θ2,1, l2,1 < γ1θ2,1 < u2,1, and γ1θ2,1 < l2,1 < u2,1.

By the factor decomposition theorem, Theorem 4.15, the combinatorial parameter graph CPG
has 33 = 27 nodes and edges as shown in Figure 5 (left). Finally, by Theorem 4.18 the
combinatorial and geometrical parameter graphs are the same and therefore Figure 5 (left)
also indicates GPG.

As indicated in section 3.2 the domain and wall graphs and hence the Morse graph (Def-
inition 3.14) are potentially different at each of the 27 parameter nodes. However, for the
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FP FP ON FP OFF FC

24 parameters 1 parameter 1 parameter 1 parameter

Figure 6. DSGRN Morse graphs for the repressilator and the number of parameter regions at which each
Morse graph is realized.

repressilator there is a single Morse graph each consisting of a single node. This emphasizes
the value of annotating the nodes of the Morse graph. As described in section 3.4 this annota-
tion indicates whether the variables transition in the associated Morse set and, if not, whether
their values are high or low. As shown in Figure 6 in the repressilator the Morse graph can
assume four different annotations: a fixed point, FP; a fixed point where all variables are above
the threshold, FP ON; a fixed point where all variables are below the threshold, FP OFF; and
a full cycle FC where all variables pass through their threshold. In Figure 6, the number of
parameters associated to each Morse graph is listed, with 24 of the 27 exhibiting the Morse
graph FP.

Returning to Figure 5 (left), which shows the entire parameter graph for the repressilator,
each node is color-coded according to the associated Morse graph. We note that a single
parameter node gives rise to this Morse graph FC indicating a periodic orbit. To further
investigate the parameter set RFC ⊂ Z which is represented by this parameter node, the
DSGRN database provides us with the set of inequalities that define RFC:

l1,3 < γ1θ2,1 < u1,3,

l2,1 < γ2θ3,2 < u2,1,(18)

l3,2 < γ3θ1,3 < u3,2.

While this unique combination of parameters is represented by a single parameter graph
node, RFC is clearly a substantial and unbounded component in the parameter space Z ⊂
R12. To see if RFC predicts well oscillations for a smooth repressilator model, we replace the
switching model by a model that uses Hill function nonlinearities, which are closely related
to the switching nonlinearities. Observe that for each z ∈ |ζ|, where ζ is a node in the
parameter graph, there is a natural one-parameter family of Hill functions. For an activating
step function σ+(x) this takes the form

(19) h+n (x) = l + (u− l) xn

θn + xn
,

and for a repressing step function σ−(x) it takes the form

(20) h−n (x) = l + (u− l) θn

θn + xn
,

where the undetermined parameter is the Hill exponent n. Note that

lim
n→∞

h±n (x) = σ±(x)

pointwise for all x 6= θ.
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We sample a point from RFC that satisfies the inequalities (18), select a Hill exponent,
and simulate a Hill function model with these parameters.

ẋ1 = −x1 + 0.5 +
1

1 + xn3
= −x1 + g3(x3),

ẋ2 = −x2 + 0.5 +
1

1 + xn1
= −x2 + g1(x1),(21)

ẋ3 = −x3 + 0.5 +
1

1 + xn2
= −x3 + g2(x2).

The choice of n will affect the dynamics, and so it is important to choose an n large enough so
that the Hill function model (21) is reasonably representative of the switching model (3). For
the repressilator, there is analysis available that allows us to suggest the minimum allowable
n, which we calculate below. Tyson and Othmer [46] proved a necessary secant condition
for stability of a global fixed point E in an I-dimensional cyclic feedback system (see also
Thron [44]), given by

| g′1(E) · · · g′I(E) |
γ1 · · · γI

< sec
(π
I

)I
,

where the Jacobian of the system is




−γ1 0 0 . . . 0 g′I(E)
g′1(E) −γ2 0 . . . 0 0

0 g′2(E) −γ3 . . . 0 0
. . .
0 0 0 . . . g′I−1(E) −γI



.

This condition is sharp when all of the decay rates are equal, which is the case here.
Applying this condition to (21), we see that for the equilibrium is E = (1, 1, 1) the secant

formula becomes

(22) | g′1(1)g′2(1)g′3(1) |< sec
(π

3

)3
.

It is readily verified that g′i(1) = −n/4 so that (22) takes the form

n3 < 4323

and therefore E = (1, 1, 1) is stable when n < 8. Since the condition is sharp, it is easy to
show that at n = 8 there is a Hopf bifurcation at which the equilibrium destabilizes and a
stable periodic orbit is born. So for n > 8 in (21), there is a stable periodic orbit. In Figure 5
(right) we show a periodic orbit for n = 9.

5.2. The bistable repressilator. The bistable repressilator is slightly more complicated
than the repressilator in that it has an additional negative feedback. Figure 4 represents these
regulatory networks in graphical form. Because of the double feedback loop we expect that
for appropriate parameter values this system may exhibit bistability, hence the name. The
associated switching system is given by
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ẋ1 = −γ1x1 + σ−1,2(x2)σ
−
1,3(x3),

ẋ2 = −γ2x2 + σ−2,1(x1),(23)

ẋ3 = −γ3x3 + σ−3,2(x2).

The logic Mi for each node is trivial except for the first equation, where we have chosen AND
logic, i.e., the negative influences of x2 and x3 are multiplicative.

In the bistable repressilator the variable x2 represses both x3 and x1, and so there are
two choices for O2, θ3,2 < θ1,2 or θ1,2 < θ3,2. Because of the extra threshold in the bistable
repressilator, there are 12 cells and 20 walls dividing the phase space.

The parameter space Z ⊂ R15 and we seek to understand the GPG that represents ar-
rangement of components of Z. To construct the CPG we again consult Table 1. The variable
x1 has two inputs and one output and the logic is multiplication; this corresponds to row 6
in the table and hence #PG1 = 6. The variable x2 has one input and two outputs and so it
corresponds to row 2. However, since the last column in Table 1 lists #PGi divided by all
possible permutations of output variable thresholds, #PG2 = 12. Finally, the variable x3 has
one input and one output, which corresponds to the first row and thus #PG3 = 3. By the
factor decomposition theorem, Theorem 4.15, the CPG has 6 ∗ 12 ∗ 3 = 216 parameter nodes,
and by Theorem 4.18 the CPG and GPG are the same. Since the parameter graph is sizable
we show in Figure 7 only half of the parameter graph corresponding to one of the two orders
of the thresholds in O2 (θ3,2 < θ1,2).

Using very similar annotation to the repressilator, there are seven distinct classes indicated
in Figure 8. For simplicity in Figure 7 we group the annotations FP, FP ON, and FP OFF
together and call this group FP. We further group the parameter nodes based on the following
four annotations: type A nodes have a Morse graph with a single fixed point FP; nodes in class
B have a Morse graph with two fixed points FP and hence signal the presence of bistability;
nodes of type C have Morse graph FC; and nodes of type D have the Morse graph with the
lower Morse set FP and the upper Morse set FC.

The collection of Morse graphs immediately signals the presence of richer dynamics across
parameter space than for the repressilator system. In addition to the four Morse graphs seen
in the repressilator example, there are two new dynamical signatures present: bistability (the
existence of two stable fixed points, type B) and an unstable full cycle with an attracting
fixed point (type D). The comparison of Figures 6 and 8 shows that the addition of a single
edge to a regulatory network RN can radically change the dynamical signature of RN across
parameter space.

From Figure 8, we see that there are six parameter vertices with the Morse graph FC, which
suggest a presence of a stable periodic oscillation. The DSGRN database provides us with the
inequalities that define these regions in the parameter Z. For the purpose of illustration, we
select one of them (parameter 151), which represents a region in Z ⊂ R15 given by

l1,2l1,3 <

{
u1,2l1,3
l1,2u1,3

}
< γ1θ2,1 < u1,2u1,3,

l2,1 < γ2θ3,2 < u2,1 < γ2θ1,2,(24)

l3,2 < γ3θ1,3 < u3,2.
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Figure 7. Bistable repressilator parameter graph with colors corresponding to partitioned Morse graph
continuation classes. Class A: single stable fixed points; Class B: bistability; Class C: stable cycle; Class D:
unstable cycle with a stable fixed point.

The curly braces denote an undetermined (arbitrary) order: the relative order of u1,2l1,3 and
l1,2u1,3 does not change the wall graph and hence the Morse graph as long as both remain
below γ1θ2,1.

We sample this parameter region at the values γ1 = γ2 = γ3 = 1, li,j = 1, θ1,3 = 2,
θ3,2 = 3, θ2,1 = 4, θ1,2 = 6, u1,2 = 2, u1,3 = 3, u3,2 = 4, and u2,1 = 5. Substituting these
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FP FP ON FP OFF FC

174 parameters 10 parameters 2 parameters 6 parameters

FP FP FP FP ON

FC

FP

20 parameters 2 parameters 2 parameters

Figure 8. DSGRN Morse graphs for the bistable repressilator.

values into (20), we have the following system of smooth equations:

ẋ1 = −x1 +

(
1 +

6n

6n + xn2

)(
1 +

2n+1

2n + xn3

)
,

ẋ2 = −x2 + 1 +
4n+1

4n + xn1
,(25)

ẋ3 = −x3 + 1 +
3n+1

3n + xn2
.

Results of the simulations are shown in Figure 9 for n = 10. There is no condition analogous
to the secant condition that would provide an estimate for n that would produce a stable
periodic orbit. Numerically, we found that at these parameter values n = 7 is sufficient for
periodicity and n = 6 is not.

We want to finish this section with an important observation about a relationship between
the parameter graph for the repressilator and the parameter graph for the bistable repressi-
lator. Since the repressilator network is a subnetwork of the bistable repressilator, a natural
question is whether there is a similar correspondence between their parameter graphs. To
begin to answer this question we investigate the parameter node given by (24) in the bistable
repressilator. We first note that because l2,1 < u2,1 < γ2θ1,2 the second component of any

target point in the system
σ−2,1(·)
γ2

< θ1,2. Therefore, perhaps after a transient, x2(t) < θ1,2 for

all t ≥ T and some T > 0. Consequently, the value of the function σ−1,2(x2) will be u1,2 for all
t ≥ T and x2 will effectively cease regulation of x1. Therefore the network that is effectively
represented by this parameter node is not a bistable repressilator but a repressilator where
the edge from x2 to x1 is erased. This brings up a set of interesting questions about how to
recognize subnetworks that are effectively represented by each node in the parameter graph
and whether it is possible to build parameter graphs of larger networks from parameter graphs
of their subnetworks. The answers to these questions are beyond the scope of this paper but
will be addressed in the near future.

5.3. p53 network. While the first two examples of this section were aimed at illustrating
the main concepts of the paper on small networks, DSGRN is being used on larger and more
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1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 x1 x2 x3

Figure 9. Hill function simulation for the bistable repressilator at parameter node 151. See the text for
parameter choices. The Hill exponent is n = 10.

Wip1 p53 Mdm2

Chk2

ATM

Figure 10. Subnetwork of key species of the p53 signaling network.

complicated networks with greater biological urgency. We briefly comment on simulations of
a subnetwork of the p53 signaling network from [37]. The point of including this model in
this paper is to indicate the ease with which DSGRN handles a network of this size and then
allows the dynamics to be interrogated.

As indicated in Figure 10 this network has 5 nodes and 8 edges and thus the parameter
space Z ⊂ Z̄ ⊂ R29. As in the previous cases we construct the geometric parameter graph
GPG by first computing the CPG using the factors listed in Table 1. This results in a GPG
with 803,520 nodes. Next we construct a DSGRN database over this parameter graph. This
problem is quite tractable and the database construction took only 37 seconds on a mid-
2014 Macbook Pro laptop (Intel Core i7-4870HQ CPU, 2.50 GHz). We note that for larger
parameter graphs, our software can scale to HPC cluster environments, but in this case this
is clearly not necessary.
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We remark that there is interest in the question of stable oscillations in this system [26].
Given the size of the GPG, visualization is impractical. However, as indicated in the introduc-
tion DSGRN produces an SQL database. The query for a Morse graph with a minimal node
annotated by FC identifies parameter nodes associated with stable recurrent dynamics where
all the species pass thresholds. There are 6904 nodes in the GPG which satisfy this query, of
which 3204 are associated with a Morse graph consisting of a single node.

Similar to the previous example we sample a parameter from the parameter region corre-
sponding to one of these combinatorial parameters and perform a numerical simulation. But
unlike the previous example, it is less obvious how to obtain such a sample. The parameter
region is a semialgebraic set defined by a collection of strict inequalities which do not have an
obvious solution technique. However, as discussed in section 4.4 we have computed CADs of
the semialgebraic sets describing combinatorial parameters. These descriptions give a more
convenient representation of the semialgebraic set which allow us to readily produce solutions.
For a rigorous account of CADs we refer the reader to [14] and [34], but we give a brief ex-
planation as follows. First, the notion of CAD requires we impose an ordering on variables.
With respect to an imposed variable ordering, a cylindrical component is a semialgebraic set
described by a sequence of inequalities providing lower and upper bounds (either strict or non-
strict) for each variable in sequence according to the imposed ordering. The lower and upper
bounds for each variable are algebraic functions of the preceding variables, and the crucial
property is that given valid choices for the preceding variables the lower bound cannot exceed
the upper bound (and hence there is always a choice for the next variable given choices of
previous variables). This gives rise to a simple procedure for finding solutions points whereby
we find a value for each variable in turn and substitute the variables we have chosen so far
into the lower and upper bounds of the next inequality in order to choose the next variable. A
CAD of an algebraic set S represents the set S as a disjoint union of cylindrical components.
Applying this to the present situation, we present a CAD description of the semialgebraic
set corresponding to a combinatorial parameter (which is indexed by our algorithms as node
40535) in the p53 parameter graph. This description is given in Table 2. Notice we sim-
plified the subscript notation. Each edge in the graph k → j is now associated to a single
index, i, and each edge has three numerical values associated to it: Ui := uj,k, Li := lj,k, and
Ti := γjθj,k. From this table we see there are three cylindrical components comprising the
semialgebraic set in R29. We remark that it is possible from CAD to decide connectedness [34]
of the semialgebraic set, though we omit details on how this is done. Choosing any column,
numerical values U, L, and T can be iteratively chosen. For example, in the top section, T7,
L1, and L2 are chosen to be completely independent values. Then L3 is chosen to be less than
an algebraic combination of those three values, followed by U1 dependent on the previous four
values, and so forth. An acceptable geometric parameter will be found by iteratively choosing
values from any one of the three columns (or connected components). The property that these
are cylindrical components means this procedure cannot fail (i.e., no matter what choices are
made, one cannot reach an inequality where the lower bound exceeds the upper bound and
it is impossible to continue). A solution which can be found using this technique is given in
Table 3. We also remark that the factorization of the GPG discussed in section 4.3 is visible
in the CAD description of Table 2. We have indicated this by partitioning the inequalities
into sections with horizontal lines. For example, the top section describes the parameter for
the factor graph of node p53, the second for node Chk2, etc.
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Table 2
CAD description of a parameter node for the p53 network. We use the following numeric

scheme to identify the edges: 1 = (ATM → p53), 2 = (Chk2 → p53), 3 = (Mdm2 → p53), 4 =
(Wip1 → ATM), 5 = (ATM → Chk2), 6 = (Wip1 → Chk2), 7 = (p53 → Wip1), 8 = (p53 →
Mdm2). The upper values, lower values, and thresholds (or product of threshold and decay rate)
for each edge correspond to Ui, Li, and Ti respectively. Example: The upper value associated with
the edge (ATM → Chk2) corresponds to U5.

Component 1 Component 2 Component 3

0 < T7 0 < T7 0 < T7

0 < L1 0 < L1 0 < L1

0 < L2 0 < L2 0 < L2

0 < L3 <
T7

L1+L2
0 < L3 <

T7
L1+L2

0 < L3 <
T7

L1+L2

L1 < U1 ≤ L3(L1−L2)+T7
2L3

L3(L1−L2)+T7
2L3

< U1 <
T7−L2L3

L3

L3(L1−L2)+T7
2L3

< U1 <
T7−L2L3

L3
T7−L3U1

L3
< U2 <

T7−L1L3
L3

T7−L3U1
L3

< U2 < L2 − L1 + U1 L2 + U1 − L1 ≤ U2 <
T7−L1L3

L3

L3 < U3 <
T7

L1+U2
L3 < U3 <

T7
L2+U1

L3 < U3 <
T7

L1+U2

T7 < T8 < L3(U1 + U2) T7 < T8 < L3(U1 + U2) T7 < T8 < L3(U1 + U2)

0 < T2 0 < T2 0 < T2

0 < L5 0 < L5 0 < L5

0 < L6 <
T2
L5

0 < L6 <
T2
L5

0 < L6 <
T2
L5

L5 < U5 <
T2
L6

L5 < U5 <
T2
L6

L5 < U5 <
T2
L6

T2
U5

< U6 <
T2
L5

T2
U5

< U6 <
T2
L5

T2
U5

< U6 <
T2
L5

0 < T6 0 < T6 0 < T6

0 < U7 < T6 0 < U7 < T6 0 < U7 < T6

0 < L7 < U7 0 < L7 < U7 0 < L7 < U7

L7 < T4 < U7 L7 < T4 < U7 L7 < T4 < U7

0 < L4 0 < L4 0 < L4

L4 < U4 L4 < U4 L4 < U4

L4 < T1 < U4 L4 < T1 < U4 L4 < T1 < U4

T1 < T5 < U4 T1 < T5 < U4 T1 < T5 < U4

0 < T3 0 < T3 0 < T3

0 < L8 < T3 0 < L8 < T3 0 < L8 < T3

T3 < U8 T3 < U8 T3 < U8

Table 3
p53 network parameters.

Edge u-value l-value θ-value

ATM → Chk2 1 1/2 1/2
ATM → p53 7/8 7/32 1/4
Chk2 → p53 7/8 7/32 3/4
MdM2→ p53 7/8 21/32 1
Wip1 → ATM 1 1/2 1/2
Wip1 → Chk2 2 1/2 2
p53 → Mdm2 2 1/2 1127/1024
p53 → Wilp1 1 1/4 539/512

As in the previous examples we perform a numerical simulation of this system using Hill
functions. Using the CAD description of Table 2 we choose decay rates γi = 1 and the
remaining parameters of the switching system as presented in Table 3. It remains to choose
the Hill exponent n for each nonlinearity, i.e., one exponent for each edge in the network.
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Figure 11. Hill function simulation for the p53 model at parameter node 40535. See the text for parameter
choices. The Hill exponent for every nonlinearity is n = 8.

Setting all Hill exponents to be 8 the solution exhibits the oscillations depicted in Figure 11.
The uniform choice of n = 6 does not produce oscillations, but many other choices, e.g.,
setting n = 2 for the connections Mdm2 → p53 and p53 → Mdm2 and n = 10 for all other
nonlinearities, also produces oscillations. It is worth noting that the peaks of p53 in Figure 11
come slightly ahead of the peaks of Mdm2, which agrees with one of the key experimental
observations in [37].

This last example is meant to indicate the usefulness of the CAD description of the nodes
in parameter space. It provides a scheme for efficiently sampling parameter points with
specific combinatorial properties. This opens the possibility for efficiently studying numerical
simulations to understand the finer structure of the dynamics that satisfies the local and global
properties of the annotated Morse graph.

Acknowledgment. We thank Chang Chan for bringing the p53 network to our attention.
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