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Abstract

The past few decades of dynamical systems theory have established that multiparameter
nonlinear dynamical systems can exhibit extremely complex behavior with respect to both the
system variables and parameters. Such complex behavior proven in theoretical work has to be
contrasted with the capabilities of application; in the case of modeling multiscale processes, for
instance, measurements may be of limited precision, parameters are rarely known exactly and
nonlinearities are often not derived from first principles. This contrast suggests that extracting
robust features which persist over a range of parameter values is of greater importance than a
detailed understanding of the fine structure at some particular parameter. That is, the resolution
at which one analyzes the problem is of fundamental importance. The goal of this paper is to
present an overview of an approach to dynamics which accounts for the role of resolution. This
approach is used to obtain a coarse yet robust description of the global dynamics at a resolution
specified a priori. A crude but rigorous characterization of the local dynamics is given via the
Conley Index - an algebraic topological invariant. Foremost, we wish to convey these ideas to a
general audience, casting the theory in a simple combinatorial framework to provide what one
needs to know to become a ‘user’.

1 Introduction

Countless questions from a variety of the sciences lead one to attempt to analyze the global dynam-
ics of multiparameter dynamical systems. We will see just a few examples in these notes. However,
when shouldering the task of studying global dynamics we must acknowledge some inherent ob-
stacles which have been established through the work of the dynamical systems community in the
last few decades. The primary obstacle is that global dynamical structures can vary on all scales in
both phase space and parameter space. For instance chaos, a phenomenon of deterministic systems
made famous by science popularizers, implies a sensitivity to initial conditions.1 That is, arbitrarily
small perturbations or errors may lead to order one differences in the behavior of trajectories. Thus
in a chaotic system the behavior of an individual orbit obtained through a numerical simulation
may not be expected to accurately represent the true orbit of the system.

Observation of the complications due to chaos dates back to Henri Poincaré around the turn of
the 19th century [2]. The subsequent classical dynamical systems theory handles this by focusing
on the existence and structure of invariant sets in contrast to the behavior of a particular orbit.
However, a similar phenomenon presents itself in parameter space: there exist systems where an
infinitesimal perturbation to the parameters can change the global dynamics [12]. This implies if
the parameters are not known precisely then even a perfect simulation (not even speaking of the
difficulties involved in numerical analysis) may suggest the wrong dynamic.

Such obstacles inherent to the classical approach to dynamics must be contrasted with the
capabilities of application. Models of multiscale processes, especially in the biological sciences, are
rarely derived from first principles, but instead through a series of approximations or heuristics.
Furthermore, parameter values are often known only to an order of magnitude or even unknown

1For a historical account of chaos see [2, 8]; a mathematical treatment can be found in [12, 14].
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all together. Finally, computations may contain errors of various orders of magnitude. Thus the
exact values produced by a model at particular parameter values cannot be expected to, and should
not intend to, match those of the physical system. Furthermore, these results are often compared
against experimental data which itself is of limited precision and often noisy. Therefore, in the
context of application the possibility of interpreting an incorrect dynamic is even more likely.

Such a contrast suggests the value of reconsidering the resolution of our analysis. That is,
extracting coarser and more robust descriptions of the dynamics is more important than under-
standing the fine structure of a model at a particular parameter. Furthermore, resolution could
be a subject of study in itself and a mathematical theory attempting to robustly describe global
dynamics should be capable at any fixed a priori resolution. In this survey we will review computa-
tional methods used to study the global dynamics of nonlinear multiparameter systems which are
rooted in the ideas of C. Conley [5]. In line with the obstacles presented above, the fundamental
objects of the theory are coarse, yet this allows them to be robust with respect to perturbations. At
its core the theory consists of two components - decomposition and reconstruction; first decompos-
ing the dynamics into gradient-like, i.e. strictly non-recurrent, and recurrent parts and using this
representation to infer the global dynamics, then ‘reconstructing’ or characterizing the behavior of
the recurrent dynamics produced from the decomposition.

2 Organization and Philosophy

This survey will introduce the Conley Theory in an unorthodox manner, beginning with an in-
troduction to combinatorial dynamics. Graphs are by now a ubiquitous mathematical idea; an
appropriate starting point to introduce the theory and related structures. We refer to studying dy-
namics on graphs as ‘combinatorial dynamics’. We will then proceed toward how to translate more
traditional dynamical models, such as continuous functions, or maps, and differential equations into
combinatorial dynamical models.

Throughout the survey we will introduce ideas or examples in highlighted boxes. These will be
differentiated into Example and Process. Example is typically an application of our ideas, while
Process is a core algorithm or procedure of the Conley Theory.

For a technical mathematical introduction to the database, we suggest [1, 4]; excellent surveys
of the Conley Theory can be found in [9, 10, 13]. The aim of this survey is to be nontechnical,
and attempt to illustrate ideas or theorems with an example rather than definition or proof. We
relegate mathematical definitions to Appendices A–C.

The second aim of this survey is to introduce the reader to mathematical terminology and
jargon, especially from the field of dynamical systems and Conley Theory; words such as robust,
coarse, global, local, et cetera (many of these words appeared in the introduction). When such
words appear we will make an effort to introduce the intuition behind their usage.

3 Combinatorial Dynamics

Much of modern data lends itself naturally toward a combinatorial representation - that is, through
undirected and directed graphs. In this survey we will focus on directed graphs. Intuitively speak-
ing, as our motivation lies in studying the dynamics of these objects, most often we view the vertices
as states of a system and the edges correspond to the behavior of the system, i.e. the ‘dynamics’.

A simple example is a ‘contact network’: a graph-based model for the spread of infectious
diseases through considering person-to-person contacts within a community, as in Example 1.

One of the most relevant questions when analyzing such directed graphs is how vertices tend
to group together into clusters. From a dynamical point of view, this corresponds to states of the
system that are recurrent in some fashion. Here, a state or set of states is recurrent in the sense
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Example 1: Contact Network

Each vertex corresponds to a person in the community,
with an edge representing if two people are in contact.
Further, contacts may be asymmetric, representing a per-
son more likely to infect one of their contacts than to
become infected by that contact.
Figure 1 depicts a highly asymmetric contact network;
perhaps vertex F represents a healthy care worker, G and
H as family members, and A through E patients.

A B C D E

F

G H

Figure 1: Contact Network

that it may be visited infinitely many times in the future. For instance, in the graph depicted in
Figure 1 the cycle of vertices F− G− H represents a recurrent set.

In this section we address a natural decomposition of the directed graph into such clusters.
However, the precise definition of a cluster is ill-defined; largely dependent upon the intended
application. For our purposes, we define a cluster as a concept similar to a strongly connected
component - roughly, a subset of vertices in which for any two vertices of the set v1 and v2,
there are directed paths from v1 → v2 and v2 → v1. The decomposition of a directed graph into
its strongly connected components seems a ubiquitous concept [6]. There are three fundamental
reasons for our focus on such components:

B1 The set of strongly connected components characterizes the ‘global’ behavior of the graph.

B2 The set of strongly connected components is efficiently computable.

B3 Examining strongly connected components lends itself to extracting rigorous results when
considering directed graphs obtained from continuous processes.

3.1 Preliminaries

As introduced above, a directed graph G is strongly connected if there is a path from each vertex in
the graph to any other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs.

Figure 2: Strongly Connected Directed Graph

This definition implies that one vertex which does not lie on any cycle is then a strongly
connected component (i.e. even if the vertex does not have a directed edge to itself). For instance,
in the figure below, each vertex is a strongly connected component.

To get rid of such cases, we modify the definition to the set of strongly connected path component
(SCPC): the maximal subset of vertices such that for each v there is a nontrivial path back to v.
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Figure 3: An acylic directed graph where each vertex is a strongly connected component

3.2 Strongly Connected Path Components

One of the most important results regarding the set of SCPCs is that it has a natural order induced
by the edges in directed graph:

For a graph G = (V,E), let P be an index set for the collection of SCPCs. For p, q ∈ P, define
p ≤ q if there is a path in G starting from a vertex in q and ending at a vertex in p. It is in this
sense the set of SCPCs is ordered.

Definition 3.1. Let G = (V,E) be a directed graph. In the terminology of Conley Theory, the set
of SCPCs is called a combinatorial Morse Decomposition of G. An individual strongly connected
path component M(q) is called a combinatorial Morse set.

Addressing B1, it can be seen that the set of strongly connected components accounts for all
of the recurrent behavior in the graph; any recurrent behavior must be contained in some strongly
connected component.

In many applications the most important part of the graph is the maximal invariant set. An
invariant set of vertices is a set S ⊂ V such that if you let S move to all of the vertices it has an
edge connecting to, the resulting set of vertices is again S. The largest such set of invariant sets
is the maximal invariant set. A formal definition is provided in Appendix B. For instance, the
maximal invariant set of the graph in Figure 2 is the graph itself; in Figure 3 there is no maximal
invariant set (that is, it is the empty set).

If v belongs to the maximal invariant set S then there must exist two SCPCs, q and p with
q > p, such that there is a directed path from q to v and a directed path from v to p. Therefore
any vertex lying out of the set of SCPCs yet inside the maximal invariant set S lies on gradient-
like dynamics between SCPCs. The dynamics are ‘gradient-like’ in the sense that they are not
recurrent. It is precisely in this sense that the set of strongly connected components characterize
the global dynamics of the graph, for this reason we refer to the dynamics inside of an SCPC as
‘local dynamics’ and off of an SCPC as ‘global dynamics’.2

Turning toward B2, there are known linear time algorithms for computing the set of strongly
connected components [6]. B3 requires a bit more mathematical machinery, and will be discussed
in Section 5.2.

3.3 Morse Graphs

Any directed graph G = (V,E) is naturally decomposed into the set of strongly connected path
components P with partial order ≤.3 From this one can construct a new graph by collapsing each
strongly connected path component to a single vertex and forming an edge q → p if p ≤ q. This is
entitled a Morse graph and denoted MG(G). The construction is further depicted in Process 1.

2One may be wondering about the vertices which do not satisfy the condition belonging to the maximal invariant
set. These are considered fairly uninteresting from the dynamical point of view, as there they are not recurrent and
are not contained between any two recurrent components.

3For the definition of partial order see Definition B.6 in Appendix B.
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Process 1: Creating a Morse Graph

(a) (b) (c)

Figure 4: Creating a Morse Graph: (a) G = (V,E); (b) Compute SCPCs; (c) Collapse each
SCPC to its own vertex, create edges based on partial order to obtain MG(G). Simply put, a
Morse graph is a compact, efficiently computable representation of the global dynamics.

Example 2: Sampled Social Network

Suppose we are interested in the propagation of information
across a social network such as Twitter. For our system the
states correspond to which users are in possession of the infor-
mation. In a basic setting we may consider the following model:
we have n users which correspond to n vertices; if user i is a
follower of user j then there is a directed edge j → i.
This graphs contains four strongly connected path components.
Only one vertex does not lie in any component. While informa-
tion may be propagated amongst users in a strongly connected
path component, it can only be propagated further to other users
according to the partial order on the SCPCs. In other words, off
of the SCPCs the information moves in a gradient-like fashion.
This idea is characterized by the Morse Graph of the network.

Figure 5: Sampled Network

(a) (b)

Figure 6: (a) Capturing strongly connected components; (b) Associated Morse Graph
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4 Combinatorialization: Discretizing a Dynamical System

Much of traditional dynamical systems theory is directed toward describing the properties of sys-
tems whose states lie on a continuum, for instance the real line R. The abstract space comprised
of the states of the system is entitled the phase space. For further information the reader should
consult [14] for a brief introduction; such systems will also be discussed in briefly in later sections.

However, in this section we will describe a method of passing from the action of a system on a
continuous space (R, for instance) to a representation via a directed graph. To keep prerequisites to
a minimum in this section, we will consider systems whose phase space X are subsets of Euclidean
space, i.e. X ⊂ Rn.

4.1 Discretizing Phase and Parameter Space

The fundamental construction to introduce is that of a grid. The construction depends upon some
topological notions, for which the reader may consult [11, 14]. To provide some quick intuition, the
topological notions of closure and interior correspond to whether one includes the ‘boundary’ points
(closure) or removes ‘boundary’ points (interior) (see Definitions B.1–B.3 in Appendix B). We use
cl(·) and int(·) to denote the closure and interior, respectively. With these heuristic definitions
given, a grid is a finite collection X of nonempty, closed and bounded subsets of X with the
following properties:

I. The union of the pieces is the whole space, i.e. X = ∪ξ∈X ξ

II. The pieces are in some sense not pathological, i.e. ξ = cl(int(ξ)) for all ξ ∈ X

III. The pieces fit together nicely - not overlapping except on the boundary, i.e. ξ ∩ int(ξ′) = ∅
for all ξ 6= ξ′

An example can be seen in Process 2.

4.2 Discretizing Dynamics

To discretize the dynamics one makes use of a combinatorial multivalued map F : X ⇒ X , which
assigns to each element ξ of grid X a subset (possibly empty) F(ξ) of X . Notice that a grid
element ξ is a subset of the phase space, and thus can be thought to represent a collection of
states of the system. Going a step further, they can be thought to correspond to vertices in a
directed graph. Then the image ξ under F is naturally represented by directed edges from ξ to the
collection of other vertices in F(ξ). Thus we can think of the combinatorial multivalued map as
being equivalent to a directed graph, and use previously mentioned graph theoretic constructions
to analyze the multivalued maps. The basic construction of F given X is shown in Process 2.

As one can choose the size of the grid elements to use, the concept of a grid allows one to study
the dynamical system at a fixed a priori resolution. Beyond its importance with respect to the
obstacles of the traditional theory, resolution has a larger role to play within the computational
Conley Theory. In general one expects that for models of well understood phenomena or physical
systems for which accurate measurements can be made it is appropriate to choose finer grids. In
contrast, given a crude or heuristic model or a system for which only coarse measurements can
be made, one expects that the results associated with cruder grids will provide more meaningful
information.
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Process 2: Constructing A Combinatorial Multivalued Map

1. For each ξ ∈ X , consider f(ξ).

Figure 7: ξ and its image f(|ξ|).

2. Cover f(ξ) with elements of the grid, and define this to be F(ξ). More precisely F(ξ) :=
{ξ′ | ξ′ ∩ f(ξ) 6= ∅}.

Figure 8: f(ξ) covered by elements of X with nonempty intersection; this defines F(ξ)

3. A combinatorial multivalued map F is also thought of as a directed graph: ξ is a vertex
and F(ξ) describes the edges

Figure 9: F as a directed graph
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Example 3: Logistic Map

We highlight an example of translating a continuous nonlinear structure into a combinatorial
multivalued map; the process we refer to as ‘combinatorialization’. A natural place to begin is
with the well-known logistic map:

f(x) = rx(1− x)

In particular we will consider an example given in [3], with r = 2.5. Figure 11 shows the graph
of f(x) in addition to the directed graph obtained by dividing the domain X = [0, 58 ] into five
subintervals of equal length.

x

f(x) = 2.5x(1− x)
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f(x) = 2.5x(1− x)

(a) (b)

Figure 10: (a) Graph of the Logistic map on [0, 58 ]; (b) Grid on the one-dimensional phase
space, depicting F(ξ2) = {ξ3, ξ4}, or directed edges ξ2 → ξ3 and ξ2 → ξ4 from the vantage of
graph theory
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f(x) = 2.5x(1− x)
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Figure 11: (c) Logistic map and grid X ; (d) Directed graph representation and strongly con-
nected path components
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4.3 Constructing a Database

We use the term ‘database’ to refer to the construction of a database of dynamical systems. That
is, one can discretize the parameter space using a grid Z, then for each grid element ζ ∈ Z one
obtains a different combinatorial description, Fζ , of the dynamics over ζ; a dynamical system Fζ
for each ζ ∈ Z. Ultimately, for each ζ ∈ Z we have an associated Morse graph, MG(Fζ). Using
techniques such as interval arithmetic [1, 15], one can guarantee that for each particular parameter
z ∈ ζ, Fζ is a valid dynamical representation for fz. The idea is depicted in Process 3.

Example 4: Construction of Multivalued Map Fζ

Parameter space for logistic map with grid Z. Highlighted is grid element ζ3 ∈ Z, where
|ζ3| = [2.5, 2.75].

2.0 2.25 2.5 2.75 3.0ζ1 ζ2 ζ3 ζ4

We consider an example where we discretize the parameter space and form a multivalued map
for ζ ∈ Z with |ζ3| = [2.5, 2.75]. We again use the logistic map, now on the domain [0,1]:

f(x) : [0, 1]→ [0, 1] = rx(1− x)
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Figure 12: (a) Graph of the logistic map on [0, 1] for r = 2.5 and r = 2.75; the region
between the parabolas corresponds to r ∈ [2.5, 2.75]. For each grid element in the domain the
multivalued map of the grid element under F is the set of intervals in the range indicated by
the highlighted boxes above the domain grid element. (b) The corresponding directed graph
representation. Notice that the entire graph forms a strongly connected component.

4.3.1 Comparing Dynamics

One of the most important aspects of the Conley-Morse database is that one can infer how the
dynamics at particular grid element ζ relate to the dynamics at neighboring grid elements.
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Process 3: Constructing a Database

For each ζ ∈ Z there is an associated Morse graph, MG(Fζ). This provides a combinatorial
characterization of the dynamics at each grid element for a grid over a bounded region of the
parameter space.

Figure 13: Consider a grid Z on parameter space Z with particular grid element ζ highlighted
and an associated Morse graph, MG(Fζ)

Consider MG(Fζ) and MG(Fζ′), two Morse graphs of neighboring parameter elements ζ and
ζ ′ as shown in Figure 14. Recall that each vertex or Morse set M(p) in a Morse graph MG(Fζ)
corresponds to a strongly connected path component, which has a geometric realization in the phase
space, which we denote |M(p)|. One way to relate MG(Fζ) and MG(Fζ′) is through considering
the realizations of the their Morse sets in the phase space. In particular, one can define a bipartite
graph with an undirected edge Mζ(p) →Mζ′(q) if |Mζ′(p)| and |Mζ(q)| intersect nontrivially in
the phase space. Such a bipartite graph is shown in Figure 15. We call this graph the clutching
graph and denote it J (Fζ ,Fζ′).

In particular, if the edges of the clutching graph define a directed graph isomorphism then we
consider MG(Fζ) and MG(Fζ′) to be in the same equivalence class. The reason we define equivalence
of Morse graphs in this fashion we be clear after discussing the properties of the Conley index in a
later section.
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Process 4: Defining the Clutching Function

Consider MG(Fζ) and MG(Fζ′), two Morse graphs of neighboring parameter elements ζ and
ζ ′ as shown in Figure 14. The method with which we relate MG(Fζ) and MG(Fζ′) is through
the pairwise intersection of their Morse sets in phase space. In particular, one can define a
bipartite graph with an undirected edge Mζ(p) → Mζ′(q) if |M(p)| and |Mζ(q)| intersect
nontrivially in the phase space.

Figure 14: Consider a grid Z on parameter space Z; Morse graphs for ζ, ζ ′

(a) (b)

Figure 15: (a) A cartoon of the realization of the Morse sets in the phase space with small
arrows representing the gradient-like dynamics; (b) Intersection of the Morse sets in phase
space induces a bipartite graph between the two Morse graphs

11



5 Discrete and Continuous Time Dynamics

In this section we introduce some ideas from classical dynamical systems theory. A dynamical
system typically consists of three ingredients: a setting in which the dynamical behavior takes
place, such as the real line or the circle; a mathematical rule or description which specifies the
evolution of the system; an initial condition or state from which the system starts.

The basic questions of dynamical systems are qualitative: for a particular initial condition, what
happens to the system in the long run? How does this long run behavior depend upon the initial
condition? On the parameters within the description? On the properties of the space on which the
system is defined?

In dynamics, time is either discrete (maps) or continuous (differential equations). To keep in
line with our previous Examples, we will introduce the theory first for discrete time. We begin with
the logistic map as presented in Example 3: a very basic example, yet one which exhibits extremely
complicated dynamics.

As previously described, the logistic equation is given by:

f(x) = rx(1− x)

A traditional tool of dynamical systems theory is the bifurcation diagram. A bifurcation diagram
shows the possible long-term values (equilibria/fixed points or periodic solutions) as a function of
a control parameter in the system. The bifurcation diagram for the logistic equation is depicted in
Figure 16. The bifurcation diagram is obtained non-rigorously: fixing a parameter value, say r = 4,
one chooses an initial condition x0 and repeatedly applying function f to x0. Letting xn = fn(x0),
we stop the computation if xn+1 becomes extremely close to xn for a long time, indicating a fixed
point. We then mark this point on the bifurcation diagram. We repeat this for many initial
conditions. Let f2(x) = f2(x) = f(f(x)), we repeat this entire process. Notice if we find a fixed
point for f2, this implies finding a periodic orbit x, y, such that f(x) = y and x = f(y). We then
repeat this entire construction for as many n ∈ N is feasible.

Figure 16: Even if a field biologist can measure birth rate within one decimal place, any computation
can suggest the wrong dynamic.
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Taking the logistic function with r = 4, we obtain

f(x) = 4x(1− x)

One can see that for r = 4 the bifurcation diagram shows very complex behavior - in fact
chaotic behavior. That is, for even very similar initial condition can result in very different long-
term behavior. As any real number has a finite approximation in terms of a computer, chaos has
a important interplay with numerical analysis. To illustrate the affect chaos has upon numerical
representation, consider the iterates xn+1 = f(xn). We consider two similar representations of 1

3 ,
and the iterates of f upon them.

x0 = 0.333333333333333

x1 = 0.888888888888889

x2 = 0.395061728395062

x3 = 0.955951836610273

...

x15 = 0.695026128241317

...

x49 = 0.071160322456580

x0 = 0.333333333333330

x1 = 0.888888888888885

x2 = 0.395061728395075

x3 = 0.955951836610284

...

x15 = 0.695026128347429

...

x49 = 0.906436654059206

As can be seen, after 49 iterations the difference between iterates is nearly the size of the domain.
Therefore any individual orbits one computes are almost certainly not correct.

As mentioned previously, models of physical processes are often framed in terms of continuous
state spaces. Much of the origins of dynamical systems theory has shown that the behavior of single
trajectories can be extremely complex and may be too difficult to study independently. Instead, the
traditional focus is on the invariant sets. However, the theoretical work of the last century makes
clear that invariant sets can possess structure on all spatial and temporal scales and furthermore
that these structures can vary dramatically over parameter sets. In particular, we highlight the
following results:

1. The existence of chaos implies a sensitivity upon the initial conditions, thus the traditional
focus on invariant sets instead of single trajectories

2. Structural stability is not generic - roughly the parameter sets which do not exhibit chaotic
behavior are not generic - that is, it is not a rule that in general most systems are not chaotic,
but rather chaos can be common (in both a topological and measure theoretic sense)

3. Both of these imply that global dynamical structures can change at all scales in parameter
and phase space, leading to the fact that any computation may suggest the wrong dynamics

5.1 The Conley Theory

In its most basic form the Conley Theory consists of two components: decomposition and recon-
struction. That is, one decomposes the dynamics by first isolating recurrent sets (computing the
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local dynamics) and determining an admissible partial order upon them (inferring the global dy-
namics). Then one reconstructs the dynamics of the isolated recurrent sets using the Conley index
- an algebraic topological invariant of the recurrent sets.

To keep technicalities to a minimum, we consider a multiparameter dynamical system given in
the form of a continuous map,

f : Rn × Rm → Rn

(x, z) 7→ fz(x) := f(x, z)

We will again let X denote a closed and bounded of Rn which contains the dynamics of interest.
Recall an invariant set is a set Sz ⊂ Rn×Rm such that f(Sz) = Sz. However, invariant sets play a
subsidiary role in the Conley Theory. One of the building blocks of Conley’s theory is the isolating
neighborhood: compact sets N ⊂ X such that

Inv(N, fz) ⊂ int(N)

where Inv(N, fz) denotes the maximal invariant of N , i.e. the largest invariant contained in N .
More precisely, Inv(N, fz) is the set of x ∈ N such that there exists an orbit of x that is contained in
N . An orbit of x is a set of points indexed by the integers Z, {xn}∞−∞, such that f(xn) = xn+1 and
x0 = x. An isolating neighborhood is aptly named as it isolates its associated maximal invariant
set.

Figure 17 illustrates how the maximal invariant set can be isolated by the isolating neighbor-
hood, as well as an invariant set which is not isolated.

(a) (b)

Figure 17: (a) The maximal invariant set Inv(N, fz) is isolated by the isolating neighborhood
by being contained within int(N); (b) The maximal invariant set Inv(N, fz), a periodic orbit or
invariant circle, which is not isolated by the isolating neighborhood.

Observe that if N is an isolating neighborhood then Inv(N, fz) ∩ ∂N = ∅, where ∂N is the
topological boundary of N . The primary significance of the isolating neighborhood is that it is
robust with respect to perturbations of the parameters. Here robust means that if N is an isolating
neighborhood for fz0 , it will be an isolating neighborhood for all fz when z is sufficiently close to z0.
This is illustrated in Example 5. The other purpose of isolating neighborhoods serve to localize the
dynamics being considered. Furthermore, isolating neighborhoods are indeed readily computable
as will be shown later in this section.

5.2 Outer Approximation

The key idea to constructing a combinatorial multivalued map is known as an outer approximation.
Examples of outer approximations can be seen in Process 2 and Example 5. We give a precise
definition here as it is relevant to applications as it is the key assumption for many of the theorems
regarding the database.
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Example 5: Robustness of the Conley Index

We return to our logistic map example f(x) = rx(1 − x). Once again we consider the graphs
for r = 2.5 and r = 2.75, which we denote f2.5 and f2.75.
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Figure 18: Graph of the logistic map on [0, 1] for r = 2.5 and r = 2.75 and g(x) = x. From
the bifurcation diagram, Figure 16, we have that the only invariant sets for f2.5 and f2.7 are
fixed points; solutions to the equation fr(x) = x. These are easily spotted as the location that
the graphs of f2.5 and f2.75 intersect the diagonal, i.e. the graph of g(x). Here the highlighted
region depicts an isolating neighborhood N = [.55, .675] for f2.5. Inv(N, f2.5) is the fixed point
at x = .6. Notice that N also serves as an isolating neighborhood for fr where r is close to 2.5;
in particular N is an isolating neighborhood for the map f2.75, as the fixed point of f2.75 does
not intersect the boundary of N .

Definition 5.1. Consider continuous function f : Rn → Rn and compact subset X ⊂ Rn. Let X
be a grid on X. A combinatorial multivalued map F : X ⇒ X is an outer approximation of f , if

f(ξ) ⊂ int(|F(ξ)|) for all ξ ∈ X

The main point is that the image of of a grid element under f is contained in the interior of the
image under the multivalued map. The following Proposition is key in that it shows that isolating
neighborhoods are readily computable via outer approximations:

Proposition 5.2. Let {Mζ(p) ⊂ X | p ∈ Pζ} be the combinatorial Morse decomposition for the
outer approximation Fζ : X ⇒ X of Fζ . Then for all p ∈ Pζ , |Mζ(p)| is an isolating neighborhood
for fz for all z ∈ ζ.

Proposition 5.2 says that to compute an isolating neighborhood we only need to computeMζ(p),
the corresponding SCPC in the graph Fζ , and consider its realization in the phase space Rn.

5.3 The Conley Index

The Conley index is an algebraic topological invariant of isolated invariant sets. That is, it is
algebraic topological in the sense that it is an equivalence class of an induced map on an abstract

15



space and invariant in the sense that isolated invariant sets isolated which can be isolated with
the same isolating neighborhood have equivalent Conley indices. One can compute an isolating
neighborhood without knowing the isolated invariant set (for instance, with the notion of an outer
approximation). Thus, in general one has access to an isolating neighborhood and no prior knowl-
edge of the isolated invariant set. It is in this way that the Conley index helps to understand or
‘reconstruct’ the dynamics of the isolated invariant set. The process of defining the Conley index is
quite involved, and we will give a casual overview. The reader may consult [4, 7] for more details.

Before describing the index, there are three important aspects of the Conley index we will
highlight [4]:

N1 One can associate a Conley index to any isolating neighborhood.

N2 If N and N ′ are isolating neighborhoods and Inv(N, fz) = Inv(N ′, fz), then they have the
same Conley index.

N3 If N is an isolating neighborhood for all z in a (path connected) subset of the parameter space
Z, then the Conley index associated with N is the same for all fz. That is, the index is
robust.

The Conley index is constructed in the following manner: take an isolating neighborhood and
the ‘exit set’ or the set of points that are leaving the neighborhood. We denote the exit set by L.
The pair (N,L) is called an index pair.4

The first ingredient of the Conley index is the space obtained by collapsing the exit set to a single
point. The resulting space is a ‘quotient space’ denoted N/L, where the collapsed exit set is now a
distinguished point denoted by [L]. An example of forming the quotient space N/L is discussed in
Procedure 5. The map f then induces a continuous map fN/L : N/L→ N/L. Unfortunately, this
map itself is not an invariant, but taking a particular equivalence class (shift equivalence [4, 7]) of
the map is an invariant.

The most basic and fundamental result is the following:

If the Conley index of N is not trivial, then Inv(N, f) 6= ∅.

Here to be trivial we mean not equivalent to the zero map under shift equivalence. This shows
that if we compute the index or show it is not trivial we may conclude that the isolated invariant
set is not empty.

The following Proposition shows that it is straightforward to compute index pairs.

Proposition 5.3. Let {Mζ(p) ⊂ X | p ∈ Pζ} be the combinatorial Morse decomposition for the
outer approximation Fζ : X ⇒ X of Fζ . Assume |Sζ | ⊂ int(X). Let the pair (N,L) be defined by

N :=
∣∣Fζ(Mζ(p))

∣∣ and L :=
∣∣Fζ(Mζ(p)) \Mζ(p)

∣∣
Then for all z ∈ ζ, (N,L) is an index pair for fz.

Proposition 5.3 shows that to compute an index pair of a Morse setMζ(p) it suffices to compute
its forward image under the multivalued map F , or the set of vertices in the graph F which have
an in edge from some vertex in Mζ .

4There are more technical restrictions on index pairs which we do not mention here. See [7] or Appendix B for
details.
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Process 5: Forming the Quotient Space N/L

1. Consider the map f : R2 → R2 given by

f
(( x

y

))
=

(
2 0
0 1

2

)(
x
y

)
=

(
2x
1
2y

)
2. The fixed point of f at x = (0, 0) exhibited in Figure 19 is the isolated invariant set of

the depicted isolating neighborhood.

Figure 19: The maximal invariant set Inv(N, fz) = (0, 0) is isolated by the isolating
neighborhood by being contained within int(N)

3. Construct the exit set of the isolating neighborhood: the set of points which leave the
neighborhood after application of f ; this is pictured in Figure 20.

Figure 20: The exit set of the isolating neighborhood

4. The quotient space N/L obtained by collapsing the exit set encodes some structure of the
invariant set. For instance, in this case the space is topologically equivalent to a circle.

≡

Figure 21: Collapsing the exit set to a point
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5.4 Conley-Morse Graphs

We have previously defined the objects Morse graphs. Armed with the Conley index, we have a tool
for characterizing the local dynamics in each Morse set, or vertex in a Morse graph. Accordingly
we define a new object: the Conley-Morse Graph, denoted CMGζ of Fζ consists of the Morse graph
MGζ of Fζ along with the Conley index associated with each Morse set Mζ(p), p ∈ Pζ .

To construct the database we can consider all the concepts developed in the last few sections,
within Conley-Morse graphs replacing Morse graphs. The following Proposition clarifies our defi-
nition of equivalence in the last section [4].

Proposition 5.4. Assume there is a unique edge (p, q) in the clutching graph J (ζ, ζ ′) that has
either p or q as its endpoint. That is, p and q have no other edges. Then the Conley index of
|Mζ(p)| under Fζ is equivalent to the Conley index of |Mζ(p)| under Fζ′.

As a Corollary to the above Proposition, we have that if two Morse graphs are equivalent (using
the definition we developed in the last section), then the Conley indices of each of the Morse sets
are equivalent under the bijection.

To summarize the construction of the last few sections, to each Conley-Morse graph equivalence
class, we associate three distinct types of information:

• The Morse graph, which provides information about the global dynamics, that is, the non-
recurrent dynamics. The partial order obtained from the Morse graph constraints the non-
recurrent dynamics. Morse graphs can be understood as giving a schematic picture of the
dynamics in phase space away from any recurrent dynamics.

• The Conely indices of the Morse sets, which provide information about the structure of the
recurrent (local) dynamics.

• The set of parameter grid elements whose Conley-Morse graph belong to the Conley-Morse
equivalence class. One can understood these equivalence classes as identifying the region in
parameter space where the identified recurrent and non-recurrent dynamics occurs at the
scale of the computation.

The continuation graph is the graph whose nodes consist of the Conley-Morse graph equivalence
classes and whose edges consist of the clutching graph information between representative Conley-
Morse graphs. This is shown in Section 6.

6 Application: Leslie Model

We will provide a overview of the database applied to a population model.5

Mathematically, the two-dimensional Leslie model is defined to be a map g : R2 → R2 given by[
x1
x2

]
7→

[
(θ1x1 + θ2x2)e

α(x1+xd)

px1

]
The Leslie model, as well as a discussion regarding its importance in population biology, are

given in detail in [16]. In the model, the population is partitioned into two generations, each with
population xi and an associated reproduction rate, θi. The nonlinearity stems from the assumption
that fertility decreases exponentially with the total size of the population. For this example we will
fix p = 0.7 and α = −0.1.

5A more detailed example on how to use the software can be found at http://chomp.rutgers.edu/Projects/

Databases_for_the_Global_Dynamics/software/CMD_example.html.
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(a) (b)

Figure 22: (a) Morse sets in the phase space of the Leslie Model, (b) Adaptive grid decomposition

Figure 23 is taken from [4] and shows the Conley-Morse database visualization software package
available at chomp.rutgers.edu, analyzing the Leslie population model [4, 16].6

Figure 23: Database information concerning dynamics for the overcompensatory Leslie model [16].
(Upper left) Continuation Graph: Each node corresponds to a Conley-Morse graph equivalence
class. Each edge corresponds to a clutching graph between Conley-Morse graphs. (Upper right)
Parameter space divided into regions corresponding to Conley-Morse graph equivalence classes.
Color coding of parameter space matches the color coding of the nodes in the continuation graph.
(Lower right) Clutching graph between two Conley-Morse graphs. This clutching graph corresponds
to the highlighted (red) edge in the continuation graph.

6A much more detailed explanation of the database explorer can be found at http://chomp.rutgers.edu/

Projects/Databases_for_the_Global_Dynamics/software/CMD_database_explorer.html
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Appendix A Notation

Symbol Meaning

∈ x ∈ N denotes x is belongs to the set N , or x is an ‘element of’ N

⊂ S ⊂ X denotes that S is a subset of X; if x ∈ S then x ∈ X

∂ ∂N denotes the boundary of N

cl(·) cl(N) denotes the closure of the N

int(·) int(N) denotes the interior of the N

\ N \ L is the set of points in N that are not in L

:= N := X defines the symbol N to be the object X

| · | If M⊂ X , X a grid on X, |M| is the realization in X - that is, |M| is a subset of X

Appendix B Definitions

Definition B.1 (Boundary). For a set N ⊂ X, the boundary
of N , denoted ∂N , is the set of points p of X such that every
neighborhood of p contains at least one point of N and at
least one point not of N .

Definition B.2 (Closure). For a set N ⊂ X, the closure
of N , denoted cl(N), is N union its boundary, i.e. the set
N ∪ ∂N .

Definition B.3 (Interior). For a set N ⊂ X, the interior
of N , denoted int(N), is the set of points in N that do not
belong to ∂N , the boundary of N .

x

y

N

The point y is on the boundary
of N since any neighborhood of y
intersects N and the complement
of N . The point x belongs to the
interior of N .

Definition B.4 (Index Pair). Let S be an isolated invariant set and suppose (N,L) with L ⊂ N
are a pair of compact sets contained in the interior of the domain of f . The pair (N,L) is called
an index pair for S provided N and L are each the closures of their interiors and

1. cl(N \ L) is an isolating neighborhood of S,

2. L is a neighborhood of N− in N ,

3. f(L) ∩ cl(N \ L) = ∅.

(where above N \ L is the set of points in N not in L)

Definition B.5 (Maximal Invariant Set of a Graph). The maximal invariant set, S, of a graph
G = (V,E) is the maximal set where S ⊂ V and {w ∈ V | there exists an edge v → w for v ∈
S} = S.

Definition B.6 (Partial Order). A partial order is a binary relation ≤ over a set P such for
p, q, r ∈ P, we have:

I. p ≤ p for all a ∈ P (reflexivity)

II. if p ≤ q and q ≤ p then p = q (antisymmetry)

III. if p ≤ q and q ≤ r then p ≤ r (transitivity)
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Appendix C Shift Equivalence

Shift equivalence is most easily defined in a general setting. Consider two functions a, b where

a : V → V and b : W →W

where V and W are objects in some category K and a and b are endomorphisms. For instance, V
and W are both either finitely generated abelian groups or finite dimensional vector spaces, and a
and b are correspondingly group endomorphisms or linear maps.

Definition C.1 (Shift Equivalence). The maps a and b are shift equivalent if there exist morphisms

r : V →W and s : W → V

such that
b ◦ r = r ◦ a and s ◦ b = a ◦ s

and a positive integer n such that

s ◦ r = an and r ◦ s = bn

Shift equivalence arises frequently in dynamical systems as a natural equivalence relation. For
instance, note that if a and b are homeomorphisms on topological spaces then they are shift equiv-
alent if and only if they are topologically conjugate [7].
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