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We introduce a technique based on algebraic topology for quantifying spatio-temporally chaotic dynamics.
The technique is illustrated using the Gray-Scott and the FitzHugh-Nagumo models.
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Introduction. It is well established both numerically and
experimentally that nonlinear systems involving diffusion,
chemotaxis, and/or convection mechanisms can generate
complicated time-dependent patterns. Specific examples in-
clude the Belousov-Zhabotinskii reaction[1–5], the Gray-
Scott model[6,7], the oxidation of carbon monoxide on
platinum surfaces[8], slime mold [9], the cardiac muscle
[10–13] and excitable media[14–16]. Because this phenom-
enon is global in nature, obtaining a quantitative mathemati-
cal characterization that to some extent records or preserves
the geometric structures of the complex patterns is difficult.
In this Rapid Communication we propose a technique aimed
at this problem. More precisely we show that using algebraic
topology, in particular homology, we can measure Lyapunov
exponents that imply the existence of spatial-temporal chaos
and suggest a tentative step towards the classification and/or
identification of patterns within a particular system.

Since the emphasis of this Rapid Communication is on
the presentation of the technique, we have chosen to work
with two well-studied systems: the 1-dimensional(1D) Gray-
Scott model

ut = d1uxx − uv2 + Fs1 − ud,
s1d

vt = d2vxx + uv2 − sF + kdv

on the interval V=f0,1.6g and the 2-dimensional(2D)
FitzHugh-Nagumo system

ut = Du + e−1us1 − udSu −
v + g

a
D ,

s2d

vt = u3 − v

on the rectangular domainV=f0,80g3 f0,80g. We use(1) to
develop the geometric intuition behind our approach and
thus restrict our computations to a single set of parameter
values:d1=2310−5, d2=10−5, F=0.035, andk=0.05632 at
which complicated spatio-temporal dynamics has been re-
ported [6,7]. To demonstrate the potential of our technique
and to emphasize that the method is dimension independent,
we study(2) at a=0.75,g=0.06 and vary the parametere.

Since these are time-dependent problems, the simplest
way to observe the dynamics of the patterns is to threshold
the data, color the excited regions, and create movies. In the
case of(1), each frame of the movie is 1D and hence the
dynamics can be better viewed as a plot in the 2D space-time
domain. Figure 1 shows a sample pattern generated in this
fashion. An important point is that this thresholded movie
provides the input data for the technique we are about to
describe. Thus, in principle, this method can be applied in
exactly the same manner to thresholded data produced from
experimental as opposed to numerical data.

Excited space-time geometry.As indicated above, our
goal is to understand and quantify the spatial and temporal
geometry of patterns. For this purpose it is useful to think of
the excited media as a subset ofV3 f0,tg, where the last
direction represents time andt is the length of the movie. If,
as is the case in(1), V is 1D, then each colored pixel of Fig.
1 can be viewed as a 2D cube. Thus the excited media is
represented by a setE in R2 consisting of a finite union of
cubes. LetVi,k denote the cube corresponding to the pixelxi
for the kth frame of the movie, thenE=hVi,kuvsxi ,tkd
ù0.23j. Observe that, viewed as a finite collection of cubes,
E provides a combinatorial representation of the excited me-
dia. At the same timeE is a subset ofV3 f0,tg that approxi-
mates the geometry of the excited media in both space and
time.

Similar ideas apply to(2), for which V is 2D so that the
elementary objects in space-time are 3-dimensional(3D)
cubes. The excited media is represented byE
=hVi,j ,kuusxi ,yj ,tkdù0.9j.

In the next section we discuss how algebraic topology can
be used to measure the complexity of the geometry of the
patterns. Before doing so, recall that we are trying to quan-
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tify both the spatial structures of the patterns and how they
change with time. Conceptually, the simplest way to do this
is to compute the topology of each frame of the movie and
then measure the change. Unfortunately, this approach can-
not measure the global interactions between the fronts of the
patterns that occur at different points in time. The other ex-
treme is to consider the topology ofE itself. However, if the
dynamics of the original system is chaotic, then it is recur-
rent, and hence for larget much of the structure should be
redundant.

For these reasons we introduce the notion of atime block
Tn,b: =hVi,kPEunøkøn+bj. Figure 1 shows the time block
T1500,2000for (1). Observe thatTn,0 represents thenth frame
of the movie. For fixedb, Tn,b captures the geometry of the
pattern interactions over a given time range. We can see how
this evolves by studying a sequence of time blocks of the
form hTasm−1d,bum=1,2, . . . ,Mj.

Computing homology.Algebraic topology is employed to
measure the topological complexity of the excited patterns.
In particular we make use of the fact that to any topological
space X one can assign homology groupsHisXd, i
=0,1,2, . . .(see[17]). Clearly, this is not the venue in which
to discuss homology theory, however, there are two issues
that need to be considered: the geometric information that
these groups contain and how they can be computed.

Returning to the very restricted setting of this Rapid Com-
munication, for any time blockTn,b, HisTn,bd>Zbi, whereZ
is the group of integers. The nonnegative integerbi is called
the ith Betti number of Tn,b. Due to the fact that
Tn,b,RdimsVd+1, bi =0 for i .dimsVd. Betti numbers give the
following geometric information:b0 equals the number of
connected components that make up the space,b1 indicates
the number of holes(tunnels in 3D), and b2 represents the
number of cavities.

To compute the Betti numbers we make use of the fact
that homology remains invariant under scaling and transla-
tion. For eachVi,kPE, defineQi,k: =fi , i +1g3 fk,k+1g {in
the case of(2) eachVi,j ,kPE definesQi,j ,k: =fi , i +1g3 f j , j
+1g3 fk,k+1g}. Let Tn,b: =hQi,kuVi,kPTn,bj. Then HisTn,bd
>HisTn,bd. BecauseTn,b is the union of unit cubes defined in
terms of an integer lattice, it is acubical set. Algorithms for
the computation of the homology of cubical sets can be
found in [18,19], and their implementation can be found at
[20].

Topological results for Gray-Scott.As mentioned in the
Introduction, we will use the existence of a positive
Lyapunov exponent to conclude the existence of spatial-
temporal chaos. This Lyapunov exponent will be measured
by means of a time series of Betti numbers.

To produce a time series that incorporates the spatial
structure, we computed the Betti numbers of variousTn,b.
More precisely, we computed hH*sT300sm−1d,10 000d um
=1,2, . . . ,12 000j and hence obtained the Betti numbers
bismd for HisT300sm−1d,10 000d.

Our first observation was thatb0smd is piecewise constant
taking on a limited number of fairly small values. However,
the time seriesBs300,10 000d : =hb1smd um=1,2, . . . ,12 000j
proved to be quite interesting. A plot of the first 2000 points
of this time series is indicated in the bottom picture of Fig. 1.

Using the algorithms in[21,22], we obtained a maximal
Lyapunov exponent of approximately 0.037 for this time se-
ries, which confirms the existence of spatio-temporal chaos
(see[6,7]).

The FitzHugh-Nagumo model.With the intuition devel-
oped in the previous example, we now turn to the 2D model
(2). We numerically solved it using code of Barkley[23–25].
Again, dynamics of the patterns of the variableu is most
easily observed by producing a movie of the thresholded
data. Figure 2 shows some snapshots of such a movie at
different values of the parametere. In particular, for 1/e

FIG. 1. (Color online) The top figure is the time blockT1500,2000

for (1). The black and gray(black and red) region indicates the
evolution of the pattern of the excited media defined byvù0.23.
Observe that the black and gray(black and red) region decomposes
into three connected components represented by three shades of
gray (red); thus b0=3. The black points are included to highlight
the holes(cycles). There are twenty such holes and henceb1=20.
Consider the leftmost hole for example; it arises from the division
of one hump into two humps which separate for some amount of
time and then coalesce together at a later point in time. The bottom
figure is a plot of the time serieshb1smd um=1,2, . . . ,2000j of Betti
numbers generated by such time blocks. This time series has a
maximal Lyapunov exponent approximately equal to 0.037.
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ø12.5 the movies indicate complicated spatial and temporal
patterns.

Benchmark results.We feel it is important to compare our
approach against the following more standard Lyapunov ex-
ponent computation. We fixedsi , jd such that sxi ,yjd
=s11.4286,21.4286d and produced a time series

husxi ,yj ,tkd uk=0, . . . ,Kj. We obtained estimates for the
maximal Lyapunov exponents as indicated in Fig. 3. We ob-
tained essentially the same result for several grid points
sxi ,yjd.

From these computations we conclude that, for those val-
ues ofe at which the maximal Lyapunov exponent is posi-
tive, (2) exhibits temporally chaotic dynamics. However, it is
important to observe that this computation completely ig-
nores the spatial complexity of this system.

Topological results for FitzHugh-Nagumo.Just as in the
Gray-Scott model, we again produce a time series by
computing the Betti numbers of various time blocksTn,b.
More precisely, we computed hH*sT10sm−1d,1000d um
=1,2, . . . ,10 000j and hence obtained the Betti numbers
bismd for HisT10sm−1d,1000d.

Again b0smd was piecewise constant taking on a limited
number of fairly small values. Moreover,b2smd;0 so that
there were no enclosed cavities inE. However, the time se-
riesBs10,1000d : =hhb1smd um=1,2, . . . ,10 000j proved again to
be chaotic. A typical plot is indicated in Fig. 2.

We computed the maximal Lyapunov exponent for the
time seriesBs10,1000d. Figure 3 provides a plot of the maximal
Lyapunov exponent as a function of 1/e. There are three
important points to be made. The first is the near agreement
between the ranges ofe on which the maximal Lyapunov
exponents are positive and zero. This suggests computing the
Lyapunov exponent from homological data is an acceptable
approach. The second is that we can now conclude that the
system exhibitsspatial-temporal chaoticbehavior. This fol-
lows from the fact that this chaotic time series is defined in
terms of the Betti numbersb1, sinceb1smdÞ0 implies that
the topology of T10sm−1d,1000 is nontrivial and b1smd
Þb1sm8d implies that the topology ofT10sm−1d,1000 differs
from that ofT10sm8−1d,1000. The fact that the Lyapunov expo-

FIG. 2. (Color online) Wave patterns generated by(2). The light
gray (red) region corresponds to excited pointssuù0.9d, dark gray
(blue) to the quiescent regionsuø0.1d, and black to the reaction
zone s0.1,u,0.9d. In the top left figure we used 1/e=14 (in
which case the pattern consists of a single spiral wave), and in the
top right 1/e=12 was used. The bottom picture
is a plot of the time serieshb1smd um=1,2, . . . ,10 000j of Betti
numbers for 1/e=11.5.

FIG. 3. Left: Maximal Lyapunov exponents, as a function of 1/e, from the time series generated by fixing the pointsxi ,yjd
=s11.4286,21.4286d in the domain and solving(2) for 30 000 time steps(stars). The diamonds and the squares are the Lyapunov exponents
of time series of Betti numbersBs10,1000d computed using different initial conditions. For points where the Lyapunov exponent computation
was not conclusive, the Lyapunov exponents were set to zero. Right: Mean values of the time seriesBs10,1000d used to compute the Lyapunov
exponents in the left picture(squares), and the mean values of the time seriesB100,1000=hb1smd um=1,2, . . . ,100j (dots), as functions of 1/e.
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nent from the homological data goes to zero sooner than that
computed from a single point can be explained by the fact
that the latter measures temporal chaos only and the homo-
logical data measures spatial structures as well. Thus it is
possible that the spatial-temporal chaos disappears before the
purely temporal chaos does. The third point is the observa-
tion that, as in the case of a fixedsxi ,yid, the maximal
Lyapunov exponent appears to be essentially constant as a
function of 1/e until it drops to zero. This implies that
Lyapunov exponents do not provide a useful measurement
for characterizing the value ofe at which the simulation is
being performed. On the other hand, plotting the average
value ofb1, as is done in Fig. 3, results in an almost mono-
tone curve. Thus, in principle, by computing the average of
the Betti numbers we can determine the parameter valuee of
the simulation. Computing the average of the Betti numbers
is much cheaper than computing the maximal Lyapunov ex-
ponent, because, as is indicated in Fig. 3, it can be computed
with a shorter time series.

Computational comments.The above mentioned results
depend upon the choice ofa and b for the time blocks
Tasm−1d,b. For the examples presented in this Rapid Commu-
nication, the choicesa=300 andb=10 000 for (1), and a
=10 andb=1000 for (2) seem to be satisfactory. However,
we cannot at this point in time suggest useful heuristics for a
particular choice. The principal issues are as follows. Ifb is
small, thenb1 is small. Since the Betti numbers are integers,
this implies that we do not have enough significant figures to
compute Lyapunov exponents. Ifb is large then the cost of
computingH1sTn,bd becomes impractical. Since the system is
chaotic, choosinga too large results in decorrelation of sub-

sequent Betti numbers. On the other hand, ifa is too small
the local change in the Betti numbers is insignificant. It
should be noted that, for computing the mean value of the
Betti numbers for(2), we were able to usea=100 because
strong correlation is not necessary.

The typical running time for generating one of the 10 000
points time series used in Fig. 3 is about 12 CPU hours or 52
wall time hours in a Beowulf cluster with 30 Pentium
4, 2.4 GHz processors. On the other hand, each of the 100
points time series requires only 0.12 CPU hours or 0.5 wall
time hours.

Conclusion.We have proposed the use of computational
homology to measure the spatial-temporal complexity of pat-
terns for systems that exhibit complicated spatial patterns. In
addition we have shown that this technique can be used as a
means of differentiating between patterns at different param-
eter values. Furthermore, although it is computationally ex-
pensive to measure spatial-temporal chaos, the computations
necessary to do such discrimination are relatively cheap. One
important feature of the proposed method is that it is fairly
automated and can be applied to experimental data.
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