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Topological characterization of spatial-temporal chaos
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We introduce a technique based on algebraic topology for quantifying spatio-temporally chaotic dynamics.
The technique is illustrated using the Gray-Scott and the FitzHugh-Nagumo models.
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Introduction. It is well established both numerically and vi=u-v
experimentally that nonlinear systems involving diffusion,
chemotaxis, and/or convection mechanisms can generate
complicated time-dependent patterns. Specific examples i the rectangular domai?=[0,80] X [0, 80]. We use(1) to
clude the Belousov-Zhabotinskii reactigh-5|, the Gray- develop the geometric intuition behind our approach and
Scott model[6,7], the oxidation of carbon monoxide on thus restrict our computations to a single set of parameter
platinum surfaceqg8], slime mold[9], the cardiac muscle values:d;=2x107°, d,=107°, F=0.035, anck=0.05632 at
[10-13 and excitable medifl4—16§. Because this phenom- Which complicated spatio-temporal dynamics has been re-
enon is global in nature, obtaining a quantitative mathematiported[6,7]. To demonstrate the potential of our technique
cal characterization that to some extent records or preservéld to emphasize that the method is dimension independent,
the geometric structures of the complex patterns is difficultwe study(2) at «=0.75, y=0.06 and vary the parameter
In this Rapid Communication we propose a technique aimed Since these are time-dependent problems, the simplest
at this problem. More precisely we show that using algebraigvay to observe the dynamics of the patterns is to threshold
topology, in particular homology, we can measure Lyapunovhe data, color the excited regions, and create movies. In the
exponents that imply the existence of spatial-temporal chaogase of(1), each frame of the movie is 1D and hence the
and suggest a tentative step towards the classification and/@ynamics can be better viewed as a plot in the 2D space-time
identification of patterns within a particular system. domain. Figure 1 shows a sample pattern generated in this
Since the emphasis of this Rapid Communication is orfashion. An important point is that this thresholded movie
the presentation of the technique, we have chosen to worRrovides the input data for the technique we are about to

with two well-studied systems: the 1-dimensiofHD) Gray-  describe. Thus, in principle, this method can be applied in
Scott model exactly the same manner to thresholded data produced from

experimental as opposed to numerical data.
Excited space-time geometns indicated above, our
goal is to understand and quantify the spatial and temporal
Up = dyUyy = Uv® + F(1 - u), geometry of patterns. For this purpose it is useful to think of
(1) the excited media as a subset@#x[0,7], where the last
direction represents time ands the length of the movie. If,
= Oyvgy + Uv? = (F + K as is the case ifl), ) is 1D, then each colored pixel of Fig.
1 can be viewed as a 2D cube. Thus the excited media is
represented by a s& in R? consisting of a finite union of
on the interval 0=[0,1.6] and the 2-dimensiona(2D) cubes. Let;, denote the cube corresponding to the pixel
FitzHugh-Nagumo system for the kth frame of the movie, therE={V,|v(x;,t)
=0.23. Observe that, viewed as a finite collection of cubes,
E provides a combinatorial representation of the excited me-
dia. At the same timé& is a subset of) X [0, 7] that approxi-

U= Au+ e lu(l —u)(u— v 3’), Ewnz:;es the geometry of the excited media in both space and
o .
2) Similar ideas apply t@2), for which Q is 2D so that the

elementary objects in space-time are 3-dimensiq3a))
cubes. The excited media is represented My
:{Vi,j'k|u(Xi,yj,tk)20.9}.

*Email address: gameiro@math.gatech.edu In the next section we discuss how algebraic topology can
"Email address: mischaik@math.gatech.edu be used to measure the complexity of the geometry of the
*Email address: wkalies@fau.edu patterns. Before doing so, recall that we are trying to quan-
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tify both the spatial structures of the patterns and how they
change with time. Conceptually, the simplest way to do this
is to compute the topology of each frame of the movie and
then measure the change. Unfortunately, this approach car
not measure the global interactions between the fronts of the
patterns that occur at different points in time. The other ex-
treme is to consider the topology Bfitself. However, if the
dynamics of the original system is chaotic, then it is recur-
rent, and hence for large much of the structure should be
redundant.

For these reasons we introduce the notion &free block
Thp: ={Vik € E|[n<k=n+b}. Figure 1 shows the time block
T15002000f0r (1). Observe thall, o represents thath frame
of the movie. For fixed, T, captures the geometry of the
pattern interactions over a given time range. We can see ho
this evolves by studying a sequence of time blocks of the
form {Tam-1p/M=1,2, ... M}.

Computing homologyAlgebraic topology is employed to
measure the topological complexity of the excited patterns.
In particular we make use of the fact that to any topological
space X one can assign homology groupH;(X), i
=0,1,2,...(see[17]). Clearly, this is not the venue in which
to discuss homology theory, however, there are two issue:
that need to be considered: the geometric information thai
these groups contain and how they can be computed.

Returning to the very restricted setting of this Rapid Com- 12

munication, for any time blocR,,, H;(T,p) =74, whereZ 110k

is the group of integers. The nonnegative integeis called 100

the ith Betti number of T,,. Due to the fact that _ &

TopC RAMD*L 3=0 fori>dim(Q)). Betti numbers give the ”

following geometric information;3, equals the number of -l

connected components that make up the spagéndicates 60 . . s : s s s s .

the number of holegtunnels in 3D, and 3, represents the L A

number of cavities.
To compute the Betti numbers we make use of the fact g1 1. (color onling The top figure is the time blocK;se0 2000

that homology remains invariant under scaling and translagr (1). The black and grayblack and regi region indicates the
tion. For eachV;, e E, deflneQiJ‘(: =[i,i+1] X.U.('k*' 1] {'n evolution of the pattern of the excited media definedvby0.23.

the case of2) eachV; ;€ E definesQ;: =[i,i+1]X[j,j]  Observe that the black and gréylack and refiregion decomposes
+1] X [k,k+1]}. Let Typ: ={Qik|Vike Tnpt- ThenH;(T, ) into three connected components represented by three shades of
EHi(Tn,b)- Becausé€l',, is the union of unit cubes defined in gray (red); thus By=3. The black points are included to highlight
terms of an integer lattice, it is @ubical set Algorithms for ~ the holes(cycley. There are twenty such holes and heie 20.

the computation of the homology of cubical sets can beconsider the leftmost hole for example; it arises from the division
found in[18,19, and their implementation can be found at of one hump into two humps which separate for some amount of
[20]. time and then coalesce together at a later point in time. The bottom

Topological results for Gray-Scots mentioned in the ~figure is a plot of the time serie,(m)|m=1,2, ... 200 of Bett
Introduction, we will use the existence of a positive numbers generated by such time blocks. This time series has a

Lyapunov exponent to conclude the existence of spatial™@iMal Lyapunov exponent approximately equal to 0.037.

temporal chaos. This Lyapunov exponent will be measured

by means of a time series of Betti numbers. Using the algorithms 21,22, we obtained a maximal

To produce a time series th?“ incorporates the Spatia\lyapunov exponent of approximately 0.037 for this time se-
structure, we computed the Betti numbers of varidys. ries, which confirms the existence of spatio-temporal chaos
More precisely, we computed{H:(T30qm-1)10000|M see[6,7)).
=1,2,...,1200p and hence obtained the Betti numbers The FitzHugh-Nagumo modéWith the intuition devel-
Bi(m) for Hi(T30am-1),10 000- oped in the previous example, we now turn to the 2D model

Our first observation was th@i,(m) is piecewise constant (2). We numerically solved it using code of Barklg83—25.
taking on a limited number of fairly small values. However, Again, dynamics of the patterns of the variakids most
the time seriesBzoo1000p: ={B1(M)|M=1,2,...,1200P easily observed by producing a movie of the thresholded
proved to be quite interesting. A plot of the first 2000 pointsdata. Figure 2 shows some snapshots of such a movie at
of this time series is indicated in the bottom picture of Fig. 1.different values of the parameter In particular, for 1&
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1=88.77 L=29.18 {u(x;,y;, 1) |k=0,... K}. We obtained estimates for the

maximal Lyapunov exponents as indicated in Fig. 3. We ob-
tained essentially the same result for several grid points
(Xi vy)

FrJom these computations we conclude that, for those val-
ues of e at which the maximal Lyapunov exponent is posi-
tive, (2) exhibits temporally chaotic dynamics. However, it is
important to observe that this computation completely ig-
nores the spatial complexity of this system.

Topological results for FitzHugh-Nagumdust as in the
Gray-Scott model, we again produce a time series by
computing the Betti numbers of various time blocKgy,.
More precisely, we computed {H«(T10m-1)1000 M
=1,2,...,1000pP and hence obtained the Betti numbers
Bi(m) for Hi(Tyom-1),2000-

Again Byo(m) was piecewise constant taking on a limited
number of fairly small values. MoreoveB,(m)=0 so that
5 i s G B G Gin e o iadii there were no enclosed cavitieskn However, the time se-

n riesB10.1000: ={{B1(M)|m=1,2, ...,10 00Pproved again to

FIG. 2. (Color onling Wave patterns generated (). The light be chaotic. A typical plot 'S. indicated in Fig. 2.
gray (red) region corresponds to excited poirfts=0.9), dark gray . We cpmputed the. maximal L.yapunov exponent fqr the
(blue) to the quiescent regiofu<0.1), and black to the reaction time seriesB 19,1000 Figure 3 provides a plot of the maximal
zone (0.1<u<0.9). In the top left figure we used k£14 (in ~ Lyapunov exponent as a function of d/There are three
which case the pattern consists of a single spiral waaed in the  important points to be made. The first is the near agreement
top right 1/e=12 was used. The bottom picture between the ranges af on which the maximal Lyapunov
is a plot of the time serie$B,(m)|m=1,2,...,1000p of Betti ~ exponents are positive and zero. This suggests computing the
numbers for 1é=11.5. Lyapunov exponent from homological data is an acceptable

approach. The second is that we can now conclude that the

<12.5 the movies indicate complicated spatial and temporafyStem exhibitspatial-temporal chaotibehavior. This fol-
patterns. lows from the fact that this cha_lonc time series is defined in

Benchmark resultae feel it is important to compare our t€rms of the Betti numberg,, since3,(m) #0 implies that
approach against the following more standard Lyapunov exthe topology of Tigm-1) 1000 IS nontrivial and B;(m)
ponent computation. We fixedi,j) such that (x,y;)  #pi(m’) implies that the topology off;om-1) 1000 differs
=(11.4286,21.4286 and produced a time series from that of Tyoqy-1)1000 The fact that the Lyapunov expo-
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FIG. 3. Left: Maximal Lyapunov exponents, as a function ofe,1from the time series generated by fixing the poirt,y;)
=(11.4286,21.4286in the domain and solvin{®) for 30 000 time stepéstarg. The diamonds and the squares are the Lyapunov exponents
of time series of Betti numbei3 ;4 1009 COMputed using different initial conditions. For points where the Lyapunov exponent computation
was not conclusive, the Lyapunov exponents were set to zero. Right: Mean values of the timB, gg1igs used to compute the Lyapunov
exponents in the left picturequares and the mean values of the time seiggy 10057 {82(M) |M=1,2, ...,100 (dots, as functions of 1¢.
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nent from the homological data goes to zero sooner than thaequent Betti numbers. On the other handy i too small
computed from a single point can be explained by the facthe local change in the Betti numbers is insignificant. It
that the latter measures temporal chaos only and the homshould be noted that, for computing the mean value of the
logical data measures spatial structures as well. Thus it iBetti numbers for(2), we were able to usa=100 because
possible that the spatial-temporal chaos disappears before titong correlation is not necessary.

purely temporal chaos does. The third point is the observa- The typical running time for generating one of the 10 000
tion that, as in the case of a fixed,y,), the maximal Points time series used in Fig. 3 is about 12 CPU hours or 52

Lyapunov exponent appears to be essentially constant as\ll time hours in a Beowulf cluster with 30 Pentium
function of 1/e until it drops to zero. This implies that 4 2-4 GHz processors. On the other hand, each of the 100

Lyapunov exponents do not provide a useful measuremeoints time series requires only 0.12 CPU hours or 0.5 wall

for characterizing the value of at which the simulation is UMe hours. ,
being performed. On the other hand, plotting the averag Conclusion.We have proposed the use of computational

value of 8, as is done in Fig. 3, results in an almost mono-1°mology to measure the spatial-temporal complexity of pat-
tone curve. Thus, in principle, by computing the average 0]tern.s.for systems that exhibit cqmphcatgd spatial patterns. In
the Betti numbers we can determine the parameter vabfe addition we have shown that this technique can be used as a

the simulation. Computing the average of the Betti number&n€ans of differentiating between patterns at different param-

is much cheaper than computing the maximal Lyapunov ex€ter values. Furthermore, although it is computationally ex-

ponent, because, as is indicated in Fig. 3, it can be computdef"Sive to measure spatial-temporal chaos, the computations
with a shorter time series. necessary to do such discrimination are relatively cheap. One

Computational commentShe above mentioned results important feature of the pro_posed meth_od is that it is fairly
depend upon the choice af and b for the time blocks automated and can be applied to experimental data.
Tam-1)p- FOr the examples presented in this Rapid Commu-
nication, the choices1i=300 andb=10 000 for(1), and a M.G. was partially supported by NSF Grant DMS
=10 andb=1000 for(2) seem to be satisfactory. However, 0107396, and by CAPES, Brazil. W.K. was partially sup-
we cannot at this point in time suggest useful heuristics for gorted by NSF Grant DMS 9973331. K.M. was partially sup-
particular choice. The principal issues are as followd i§  ported by NSF Grant DMS 0107396. Computations were
small, theng; is small. Since the Betti numbers are integers,supported by the Center for Computational Molecular Sci-
this implies that we do not have enough significant figures tence and Technology at the Georgia Institute of Technology
compute Lyapunov exponents. ifis large then the cost of and partially funded through a Shared University Research
computingH,(T),,) becomes impractical. Since the system is(SUR) grant from IBM and the Georgia Institute of Technol-
chaotic, choosing too large results in decorrelation of sub- ogy.
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