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Abstract

We present mathematical models based on persistent homology for analyzing force distributions in particulate systems.
We define three distinct chain complexes: digital, position, and interaction, motivated by different capabilities of collecting
experimental or numerical data, e.g. digital images, location of the particles, and normal forces between particles,
respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations
of the geometry captured by these complexes. To each complexes we define an associated force network from which
persistent homology is computed. Using numerical data obtained from molecular dynamics simulations of a system of
particles being slowly compressed we demonstrate how persistent homology can be used to compare the geometries of
the force distributions in different granular systems. We also discuss the properties of force networks as a function of
the underlying complexes, and hence, as a function of the type of experimental or numerical data provided.

1. Introduction

Particulate systems consisting of a large number of
particles have attracted significant attention in the last
decades. Despite significant research on these systems,
their properties are still not well understood and some
of them appear to be rather elusive. The fact that the
forces do not propagate uniformly in the systems made
of interacting particles has been established in a number
of different systems, ranging from those where ‘particles’
are on atomic or molecular scales, to those with macro-
scopic particles, see, e.g., [1, 2, 3]. It is well accepted that
the interparticle forces play a key role in determining the
mechanical properties of static and dynamic systems; see
e.g. [4] for an extensive review of the role of interaction net-
works in the context of amorphous solids. However there
are no universal methods for describing and quantifying
relevant aspects of the interparticle forces. For example,
even the concept of a ‘force chain’ (loosely speaking, a
connected set of particles interacting by a larger than av-
erage force), commonly used in granular community, is not
precisely defined.

One approach is to consider particle interactions from
statistical point of view. For example, the works by Radjai
and collaborators, see, e.g. [5, 6], discussed the differences
in the probability density functions of strong and weak
force networks (distinguished by the forces being larger
or smaller than the average one) arising in simulations;
Behringer and collaborators explored these networks in
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the systems built from photoelastic particles, see e.g. [3].
Only recently, attempts have been made to move beyond
purely statistical description and consider in more detail
the properties of these networks. Examples of recent stud-
ies include works by Tordesillas and collaborators where
a detailed discussion of the forces between particles have
been presented, see [7, 8] and the references therein. These
studies have explained a number of features of the force
networks, but have also uncovered significant complexity
of the particle interactions, which is difficult to address
by considering the features of the force network based on
local-type of analysis. Very recently, initial attempts have
been made to consider the interparticle forces based on
network-type of analysis [9, 10], and of by exploring their
topological properties [11].

With the goal of extending our ability to systematically
explore network properties in greater detail, the present
paper develops rigorous mathematical models capable of
capturing geometric features of particle interactions. There
are a variety of concerns that need to be addressed by these
models. Three prominent issues are the ability to interro-
gate large data sets, the form of data that is available to
be analyzed, and the ability to quantify a multitude of
geometric structures that range over a variety of different
force levels.

The approach that we present is based on algebraic
topology and in particular persistent homology [12, 13].
This is a relatively new mathematical technique that pro-
vides a computationally efficient rigorous framework for
multi scale analysis. The computational efficiency is es-
sential since the goal is to apply these techniques to large
data sets. Another key feature of persistent homology is
that it reduces a scalar function to a persistence diagram,
which is a collection of points in the plane where each
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point encodes well defined geometric information about
the function, but does not rely on a particular choice of
threshold to do this. In the context of particulate sys-
tems, this means that a specific definition of ‘force-chains’
or similar objects is not required. Furthermore, there are
a variety of metrics that can be imposed on the space of
persistence diagrams such that in the context of partic-
ulate systems the application of persistent homology can
be interpreted as a continuous non linear projection of the
force networks to the space of persistence diagrams.

These properties of persistent homology suggest that it
is a good tool to study both the static and the dynamical
aspects of experimental and computational realizations of
particulate systems. We have shown that persistent ho-
mology can be used to identify and quantify the difference
in the force networks of dense granular materials (DGM)
made of particles with different physical properties [14] and
we are currently exploring its use in the analysis of domi-
nant time scales and the structure of attractors in systems
undergoing time dependent forcing. However, this analy-
sis is predicate upon being able to take the experimental
or numerical data, produce persistence diagrams, and un-
derstand the confidence with which one can interpret the
results. This process is the focus of this paper.

As indicated above, persistent homology is based on al-
gebraic topology and thus its computation is based on the
construction of a finite complex. Therefore, the first issue
that is addressed (see Section 2) is the construction of ap-
propriate complexes from the experimental or numerical
data. The answer depends upon the type of data that is
provided, which in turn is dependent upon the method by
which the data is obtained. With this in mind we propose
three different complexes: digital, position, and interac-
tion. One of the results that we present is that the infor-
mation that can be extracted via the use an interaction
network is significantly more reliable than that of a digital
or position network. The interaction network can be used
in the setting of numerical simulations or particular types
of experiments [3] where complete information about the
forces between adjacent particles may be known. However,
for many experiments only the total force experienced by
a particle may be available [15]. This necessitates the use
of a digital or position network, depending upon how the
data is collected and physical properties of the individual
particles.

The digital and position complex can, in a weak sense,
be thought of as providing a geometric structure for the
underlying particle network. The interaction complex is
an abstract mathematical space. This complex serves as
an underlying space for modeling all possible force inter-
actions between the particles. To include the information
about forces requires the construction of the associated
force networks (see Section 4). Again, the construction is
based on two constraints, the type of data available and
the requirement that we can use the force networks to
compute persistent homology.

We do not assume that the reader is familiar with alge-

braic topology. Section 3 provides a simple review of the
basic ideas of homology theory and Section 5 describes per-
sistent homology and persistence diagrams. In Section 6
we discuss the space of persistence diagrams, in particular
the appropriate metrics on the space, and we provide a
theorem that justifies the claim that the interaction force
network is optimal (of course, this depends on having the
appropriate data).

In Section 7 we conclude with a review of the devel-
oped concepts in the context of DGM data obtained by
discrete element based simulations (DES). We choose to
work with these numerical simulations since all the data is
available with high precision and therefore we can process
it through all three force network constructions (digital,
position, and interaction). This allows for greater clarity
in interpreting the geometric meaning of the persistence
diagrams, greater ease in comparing the results of the dif-
ferent networks, and simplicity in testing for stability with
respect to perturbations. The reader who is familiar with
the language of persistent homology may wish to skip di-
rectly to this section, before examining the details of the
constructions.

There are several points that we encourage the reader
to keep on mind while reviewing Section 7. First, we pro-
vide a wide a variety of figures of the force networks in this
section to help develop intuition in interpreting the per-
sistence diagrams. However, the information itself is con-
tained completely within the persistence diagrams. This
is important since current technology makes the study, ei-
ther experimentally or numerically, of 3 dimensional par-
ticulate systems feasible. Visually extracting information
from these higher dimensional systems is much more dif-
ficult (this is, in fact, one of the reasons that we choose
to present our results with 2 dimensional systems of parti-
cles). Second, in our examples we make use of the magni-
tude of the normal force, but in the context of DGM there
are other options such as the magnitude of tangential force
and in principle any function that assigns a scalar value to
every edge can be used. Finally, and even more generally,
though this paper is focussed on DGM, the constructions
are independent of the details of particle-particle inter-
action and could as well be applied to any other system
consisting of interacting particles.

2. Particle Networks

As is indicated in the Introduction, the first step to-
wards using algebraic topology to characterize the geomet-
ric structures associated with DGM is to create complexes
through which the geometry of the particles can be ex-
pressed. We introduce three complexes motivated by the
type of data commonly obtained from experiments or nu-
merical simulations. Consider Figure 1(a) that shows a
small portion of an image derived from physically shear-
ing a collection of photoelastic disks (courtesy of R.P.
Behringer, unpublished results).
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Digital This figure arises from a digital image and thus
the data can be viewed as a collection of a large
number of pixels.

Positions Since this is a controlled experiment involving
circular disks, to determine the configuration of the
particles it is sufficient to know the the locations of
their center points and their radii.

Interactions The particles are made of photoelastic ma-
terial and thus the light intensities within the par-
ticles can be used to determine the normal forces
between the particles.

We remark that modern imaging technologies make it easy
to extract pixel or voxel data from two and even three di-
mensional granular systems. Furthermore, the natural a
priori assumptions that need to be made concerning the
geometry of the particles appear to be relatively modest;
the imaging resolution should be fine enough to recognize
individual particles. In contrast appropriate use of posi-
tion data requires that the particles have a simple, easily
characterized geometry. Clearly the interaction data is
the most difficult to obtain, requiring clever use of special
materials and/or technology by the experimentalist.

Our approach is to encode each of these data types
into a different complex and one of the goals of this paper
is to make clear the difference in form and quality of the
geometric information that can be reliably extracted from
each approach. One not particularly surprising conclusion
is that the interaction data provides the best information
and the digital data the worst, but it is worth quantifying
these differences. With this in mind we begin with sev-
eral formal definitions. Our focus is on physical systems,
thus for the most part we restrict our discussion to two
and three dimensional complexes (see [12, 16] for a more
general discussion).

To define a simplicial complex CN we begin with a
finite set of vertices CN(0) := {vi | i = 0, . . . , I}. An n-
dimensional simplex in CN is a subset of CN(0) consist-
ing of n + 1 vertices. The set of n-dimensional simplices
in CN is denoted by CN(n). Given the set of vertices
CN(0) := {vi | i = 0, . . . , I} it is customary to denote the 0-
dimensional simplices by 〈vi〉, the 1-dimensional simplices
by 〈vi, vj〉, and the 2-dimensional simplices by 〈vi, vj , vk〉.
A one and two dimensional simplices are referred to as
edges and triangles. A simplicial complex CN is a collec-
tion of simplicies that satisfies the following property: if
σ ∈ CN and σ′ ⊂ σ, then σ′ ∈ CN.

Definition 2.1. Given a collection of circular
disks {pi | i = 0, . . . , I}, location of their centers{
xi ∈ R2 | i = 0, . . . , I

}
, and their radii {ri | i = 0, . . . , I}

the associated position complex CNP is the simplicial
complex consisting of vertices {vi | i = 0, . . . , I}, where
each vertex vi is identified with particle pi, and edges
〈vi, vj〉 if and only if ‖xi − xj‖ ≤ ri + rj .

(a) (b)

(c) (d)

Figure 1: Different representations of the particle networks derived
from experimental data. For simplicity we neglect the particles that
intersect the edges of the picture. (a) Small portion of a digital image
of an experimental system. (b) Idealized extraction of particles from
image. (c) Position network. (d) Small portion of Digital network
showing individual pixels. The interaction network has no immediate
geometric meaning and hence is not shown.

Note that the position complex as defined above agrees
with the unweighted (binary) network of [10] and the con-
tact network of [8].

For the sake of clarity Definition 2.1 is presented in the
context of the examples considered in this paper. More
generally, one can consider spherical particles positioned
in Rd, d = 3 being the most relevant for physical appli-
cations. As presented the position complex is an abstract
simplicial complex; that is, there is no specific geomet-
ric object associated with it. In the context of this work
we can always geometrize the complex by declaring the
vertices to be the points

{
xi ∈ R2 | i = 0, . . . , I

}
and the

edges to be the line segments connecting the points. From
now on we rarely distinguish between the abstract simpli-
cial complex and its geometric realization.

Definition 2.2. Given a collection of particles
{pi | i = 0, . . . , I} the interaction complex CNI is the
simplicial complex consisting of vertices {vi | i = 0, . . . , I}
where each vertex vi is identified with particle pi, all
edges 〈vi, vj〉, and all triangles 〈vi, vj , vk〉.
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There are two remarks to be made at this point. First,
Definition 2.1 gives rise to simplicial complexes that are
graphs. We introduce and make use of higher dimensional
complexes at the end of this section. Second, while the
position complex can be given a geometric interpretation,
this is not the case for the interaction complex. The latter
complex provides a suitable underlying space for studying
force interactions between the particles. Justification of
this statement is given in Section 5.

To interpret the pixel data we make use of cubical
complexes. Observe that once the pixel data is obtained
the actual size used to represent each pixel is no longer
an issue. Thus, for the sake of simplicity of discussion
and without loss of generality we assume that the pixel
data is embedded in R2 with each pixel being represented
by a square defined by the integer lattice. More pre-
cisely, a 2-dimensional cube (pixel) is a square of the form
[n, n+ 1]× [k, k+ 1], a 1-dimensional cube (edge) is a unit
interval of the form [n, n]× [k, k + 1] or [n, n+ 1]× [k, k],
where n, k ∈ Z, and a 0-dimensional cube (vertex) is a
point with integer coordinates. As in the simplicial set-
ting a cubical complex CN is a collection of cubes that
satisfy the following property: if σ ∈ CN and σ′ ⊂ σ, then
σ′ ∈ CN.

Definition 2.3. Given a digital image of particles
{pi | i = 0, . . . , I} the digital complex CND is the cubical
complex consisting of squares {σj} where each square σj
represents a single pixel associated with some particle.

How pixels are associated with particles is intention-
ally left vague in Definition 2.3. The actual association
depends on the particular characteristics of the imaging
device, filtering, thresholding, etc used to obtain and pro-
cess the data. Conceptually, the most straightforward
approach is to discretize the domain of the image into
squares, identify the squares with pixels, and declare the
pixel to represent a particle if the associated square in-
tersects the particle. A cubical particle network CND is
shown in Figure 1(d). We provide more detail about the
construction later.

The cubical structure can be applied to voxels, by rep-
resenting each voxel as a unit cube of the integer lattice in
R3 (see [16] for the general theory).

Having defined these complexes a reasonable first ques-
tion is whether they correctly capture the topology of the
particle configuration. We begin with the following posi-
tive result under the assumption that the particles cannot
deform under the pressure induced by contacts with other
particles.

Proposition 2.4. Given a collection of circular
hard disks {pi | i = 0, . . . , I}, location of their centers{
xi ∈ R2 | i = 0, . . . , I

}
, and their radii {ri | i = 0, . . . , I}

the associated position complex CNP is homotopic to the
union of the regions occupied by the particles,

⋃I
i=0 pi.

The proof follows from retracting the set of particles
onto the geometric realization of CNP (see for example

Figure 2: With complete information the position complex CNP has
the same homotopy type as the configuration space of the particles
∪I

i=0pi. The proof involves collapsing the particles onto graph.

(a) (b) (c)

Figure 3: Failure of the digital complex to correctly capture the
topology of the particle configuration. (a) The particle configuration
consists of two components and contains no loops. The associate
digital complex has one component and one loop. (b) The particle
configuration contains one loop while the digital complex contains
none. (c) The particle configuration contains one component and no
loops. The associate digital complex has one component and one
loop. Furthermore, doubling the resolution of the camera does not
extinguish the existence of an unwanted loop.

Figure 2). We do not provide details of the proof because
this result is of limited importance. In any experiment
or numerical simulation the locations of the particles can
only be given up to some specified precision. If we assume
the particles to be hard, then two particles pi and pj are
in contact if and only if ‖xi − xj‖ = ri + rj . Clearly, arbi-
trarily small errors in xi and xj can lead to an inequality
which indicates that the particles are not in contact. The
same argument applies to arbitrarily small errors in the
measurements of the radii of the disks. Assuming that the
particles are soft makes this result slightly more robust,
but this is tempered by the fact that this stability de-
pends on the existence of sufficiently large normal forces.
We attempt to quantify these comments in Section 7.2.

To measure the topological fidelity of the digital com-
plex requires the choice of a rule for determining if a pixel
is included in the complex or not. For the sake of clarity
we continue with the conceptually simple rule introduced
earlier. As is indicated by Figure 3 the failure of the digi-
tal complex CND to correctly capture the topology of the
particle configuration can be quite dramatic. Even the
simplest setting of two particles with a high pixel resolu-
tions does not guarantee a correct topological description.
Figures 3(a) and (c) demonstrates that both the number
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(a) (b) (c)

Figure 4: Two configuration spaces with position complexes CNP .
(a) Crystaline structure with many loops formed by three particles.
(b) Noncrystaline structure with fewer loops than (a). (c) Flag com-
plex CNN

P derived from (b). Observe that the only loops which re-
main are associated with defects.

of connected components and holes can be counted incor-
rectly. Figures 3(a) and (b) show that there is no particu-
lar direction to the error in the hole count. The fact that
the number of components of the digital complex is never
larger than that of the particle configuration arises from
our assumption on how to identify pixels with particles.
In particular our approach leads to an artificial expansion
of the area covered by each particle. Thus, two separate
particles can appear to be in contact, but two particles
that are in contact can never appear to be separated.

To keep things in perspective we remind the reader
that even though it is clear that the digital complex can
fail to record the correct topology in a variety of ways it
is the easiest means of collecting data and is applicable in
situations in which the forces between the grains cannot be
directly measured and without a priori assumptions about
the geometry and rigidity of the grains.

As is indicated in Figure 4 if we restrict our defini-
tion of the position complexes to graphs, we will detect
many holes that may not be of interest. In particular,
Figure 4(a) suggests particles in a crystalline structure in
which CNP has 9 holes. This should be contrasted with
Figure 4(b) in which there are only 4 holes, but three of
them indicate that the particles are not as densely packed
as possible. Since in a perfect densely packed crystalline
structure made up of disks of the same size all holes would
be made up of exactly 3 particles we refer to a hole involv-
ing four or more particles as defect.

To remedy this counting of ‘uninteresting’ loops or
equivalently to only count defects we construct the flag
complexe CNN

P as follows. Set

CN
N(0)
P := CN

(0)
P and CN

N(1)
P := CN

(1)
P

and
〈vi, vj , vk〉 ∈ CN

N(2)
P

if and only if

{〈vi, vj〉, 〈vi, vk〉, 〈vj , vk〉} ⊂ CN
(1)
P .

Remark 2.5. If one is working with particles in R3, then
the same arguments can be used to justify the use of the

flag complex where 〈vi, vj , vk, vl〉 ∈ CN
N(3)
P if and only if

{〈vi, vj , vk〉, 〈vi, vj , vl〉, 〈vi, vk, vl〉, 〈vj , vk, vl〉} ⊂ CN
N(2)
P .

It is worth noting that an analogous approach will not
work in the context of digital complexes. A square can be
missing from CND because of the phenomena indicated in
Figure 3(a) or (c), but it can also be missing because it
represents the loop formed by four distinct particles.

3. Homology

We pause in our development of the networks to review
a few fundamental definitions from the classical theory of
homology with a focus on the simple setting of the digi-
tal, position and interaction complexes introduced in Sec-
tion 2. For a more general discussion the reader is referred
to a standard text in algebraic topology or to [12, 16] for
descriptions more closely associated with data analysis.

Recall that position complexes CNP and interaction
complexes CNI are simplicial complexes. This leads to
our use of simplicial homology. Since we are working with
planar arrangements of particles it is sufficient to use Z2

coefficients, i.e. the set {0, 1} with the standard binary
addition and multiplication operations. Recall that CN(n)

denotes the set of n-dimensional simplices in the simplicial
complex CN. The n-chains of CN is defined to be the vector
space

Cn(CN) :=

 ∑
σ∈CN(n)

mσσ | mσ ∈ Z2

 . (1)

Observe that Cn(CN) is the vector space over Z2 with basis
elements consisting of the n-dimensional simplices.

The associated boundary maps are linear maps (these
are often represented as matrices using the simplicies as
bases) ∂n : Cn(CN) → Cn−1(CN) (C−1(CN) := 0) defined
on the simplices as follows

∂0〈vi〉 := 0
∂1〈vi, vj〉 := 〈vi〉+ 〈vj〉

∂2〈vi, vj , vk〉 := 〈vi, vj〉+ 〈vi, vk〉+ 〈vj , vk〉.

A direct calculation making use of the linearity and the
use of Z2 coefficients show that ∂n−1 ◦ ∂n = 0, e.g.

∂1 ◦ ∂2〈vi, vj , vk〉
= ∂1(〈vi, vj〉+ 〈vi, vk〉+ 〈vj , vk〉)
= ∂1〈vi, vj〉+ ∂1〈vi, vk〉+ ∂1〈vj , vk〉
= 〈vi〉+ 〈vj〉+ 〈vi〉+ 〈vk〉+ 〈vj〉+ 〈vk〉
= 0.

The boundary maps can be used to identify compo-
nents and loops. To do this we focus on cycles, these are
chains which are sent to the 0 vector under ∂n. More for-
mally,

Zn(CN) := ker ∂n.
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c1

c2
c3

Figure 5: Three different 1-dimensional chains. Each of these chains
corresponds to a loop and hence is a cycle. The [color used]red chain
c1 and the [color used]green chain c2 correspond to the same hole
in the particle network. The brown loop c3 does not correspond to
any hole and can be contracted to a point.

Observe that 〈vi〉 ∈ Z0(CN) and 〈vi, vj〉+〈vi, vk〉+〈vj , vk〉 ∈
Z1(CN).

The power of homology is that we are able to move
from geometric data to an algebraic format from which we
can then extract geometric information. For example, the
algebraic statement that 〈vi〉 ∈ Z0(CN) can be interpreted
as a statement that 〈vi〉 identifies a component of CN. Sim-
ilarly, 〈vi, vj〉 + 〈vi, vk〉 + 〈vj , vk〉 ∈ Z1(CN) can be iden-
tified with the path of edges 〈vi, vj〉, 〈vi, vk〉, 〈vj , vk〉 that
makes up a loop. To emphasize the relationship between
the algebra and geometry consider the simplicial complex
indicated in Figure 5. There are three chains that form
loops and hence cycles indicated in [color used]red, green
and brown.

For obvious reasons it is important not to over count
components or loops. In particular, if an edge 〈vi, vj〉 be-
longs to CN, then 〈vi〉 and 〈vj〉 belong to the same compo-
nent and therefore we wish to identify them. This can be
done algebraically by the relation ∂1〈vi, vj〉 = 〈vi〉 + 〈vj〉.
Similarly, if a 2-dimensional simplex 〈vi, vj , vk〉 ∈ CN,
then the loop 〈vi, vj〉, 〈vi, vk〉, 〈vj , vk〉 does not enclose a
hole and thus should not be counted. Again, this can
be detected algebraically by the relation ∂2〈vi, vj , vk〉 =
〈vi, vj〉 + 〈vi, vk〉 + 〈vj , vk〉. Observe that the relations in
these examples are obtained via images of the boundary
operator. This leads to the definition of the boundaries of
CN,

Bn(CN) := ∂n+1 (Cn+1(CN)) .

Referring to the complex depicted in Figure 5 observe that
there exists c̄ such that ∂2c̄ = c1+c2 which implies that the
cycles c1 and c2 represent the same hole in the complex.
This motivates the following definition. The n-th homology
group of the simplicial complex CN is defined by

Hn(CN) :=
Zn(CN)
Bn(CN)

it is the vector space of equivalence classes of cycles iden-
tified by boundaries. To be more specific given a cycle
z ∈ Zn(CN) the associated homology class [z] = [z]CN is

the equivalence class of all cycles of the form z + b where
b ∈ Bn(CN).

The dimension of Hn(CN) is called the n-th Betti num-
ber βn(CN). β0(CN) counts the number of components and
β1(CN) counts the number of loops which encircle a void.
Because the simplicial complex CNN

P can be embedded in
the plane, β2(CNN

P ) = 0. The homology of CNI is more
complicated, though from the definition one can determine
that

βn(CNI) ∼=

{
1 if n = 0
0 if n = 1.

(2)

For the sake of simplicity we have presented homol-
ogy in the context of a 2-dimensional simplicial complexes.
However, homology can be extended to arbitrary dimen-
sion and defined in the context of very general topologi-
cal spaces. One of the fundamental properties is that if
two topological spaces are homotopic, then they have the
same homology groups. A corollary of this is that un-
der the hypothesis of Proposition 2.4 the Betti numbers of
CNP agree with the Betti numbers of the space defined by
∪Ii=0pi. However, as is discussed in Section 2 we cannot
expect this to be the case for CNI , and in practice this is
rarely the case for CNP or CND.

We do not present the details of computing homology
with cubical complexes. Conceptually the ideas are the
same, though the boundary operators are slightly differ-
ent. The interested reader is referred to [16] for a complete
presentation. Even more generally, simplicial and cubical
complexes are examples of chain complexes and the indi-
vidual simplices or cubes are examples of cells.

The reader may be somewhat underwhelmed by the
fact that we have constructed a significant amount of al-
gebra to essentially count components and loops, espe-
cially since there are extremely efficient graph theoretic
algorithms for performing these operations. However, the
algebra allows us to compare loops in different complexes.
Let CN and CN′ be two distinct chain complexes. A col-
lection of linear maps φn : Cn(CN) → Cn(CN′) are chain
maps if

∂′nφn = φn−1∂n

for all k where ∂n and ∂′n are the boundary maps for
Cn(CN) and Cn(CN′). A fundamental result is that if φn
is a chain map, then φn induces a linear map on homology
φn : Hn(CN)→ Hn(CN′) defined by

φn([z]CN) := [φn(z)]CN′ .

For the purposes of this paper it is sufficient to note that
if CN ⊂ CN′, then the inclusion map induces, for each
dimension, a chain map and hence a map on homology.

4. Force Networks

As is indicated in the Introduction it is well accepted
that the geometry of force chains plays an important role
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in determining the macroscopic properties of dense gran-
ular material. In this section we expand on the complexes
constructed in Section 2 to include the forces between the
particles into this mathematical framework. In the present
work we will focus only on the normal force, that is, the
component of the force projected on the line connecting
the centers of interacting particles. Wewill view the mag-
nitude of the normal force as a scalar field defined over
the complex, i.e. a function f : CN → R. There are two
constraints on the definition of f . The first arises from
the use of persistent homology to capture the geometry
of the force chains. The second is related to the type of
information extracted from the experiment or simulation.

To understand the first constraint assume for the mo-
ment that we are given a complex CN and a scalar field
f : CN → R. Based on the concept of a force chain we
are interested in the geometry of a part of the complex on
which the forces exceed a specified level. Thus we define
a force network to be the super level set

FN(f, θ) := {σ ∈ CN | f(σ) > θ} (3)

which corresponds to the part of the particle network ex-
periencing force larger than θ. We are using homology
to quantify the geometry of FN(f, θ) and hence we need
FN(f, θ) to be a complex for every value of θ. Recall that
the crucial property of a complex is: if σ ∈ CN and σ′ ⊂ σ,
then σ′ ∈ CN. Thus, in our construction of f we need to
insure that this condition is satisfied. This leads to the
following definition.

Definition 4.1. Given a compex CN, a function f : CN→
R is monotone if f(σ′) ≥ f(σ) for every σ′, σ ∈ CN such
that σ′ ⊂ σ.

It is left to the reader to check that if f is monotone,
then FN(f, θ) is a complex for every value of θ.

Definition 4.2. Given a compex CN and a monotone
function f : CN → R, the associated force network filtra-
tion is the collection of all force network complexes

{FN(f, θ) | θ ∈ R} .

The second constraint on the construction of f : CN→
R arises from the assumptions concerning the available
information. The weaker assumption, which we associate
with digital or position complexes, is that for each particle
we can estimate the forces experienced by that particle.
The stronger assumption, which leads to the use of an
interaction complex, is that we can estimate the forces
between any two particles. This leads to the following
definitions.

Digital Force Networks. Let ψi ∈ R denote the magnitude
of the force on particle pi. Recall that a 2-dimensional
cube σ ∈ CN

(2)
D if it intersects at least one particle pi.

Define
f(σ) = max {ψi | σ ∩ pi 6= ∅} .

The definition of f is extended to the edges and vertices
as follows:

f(σ) = max
{
f(σ′) | σ ⊂ σ′, σ′ ∈ CN

(2)
D

}
.

Position Force Networks. Let ψi ∈ R denote the magni-
tude of the force on particle pi. For each 〈vi〉 ∈ CN

(0)
P

define
f(〈vi〉) := ψi.

Extend the definition of f inductively by

f(〈vi, vj〉) = min {f(〈vi〉), f(〈vj〉)}

and in the case of the flag complex CNN
P ,

f(〈vi, vj , vk〉) = min {f(〈vi, vj〉), f(〈vi, vk〉), f(〈vj , vk〉)} .

Interaction Force Networks. Let ψi,j ∈ R denote the mag-
nitude of the force experienced between particles pi and
pj . For the interaction network CNI the natural starting
point for the definition of f is on the edges,

f(〈vi, vj〉) := ψi,j .

The function is extended to the vertices by

f(〈vi〉) = max {f(〈vi, vj〉) | 〈vi, vj〉 ∈ CNI}

and to the 2-dimensional simplices by

f(〈vi, vj , vk〉) = min {f(〈vi, vj〉), f(〈vi, vk〉), f(〈vj , vk〉)} .

We use the following proposition to summarize the
above discussion and constructions.

Proposition 4.3. Given a complex CN•, • ∈ {D,P, I}
and f defined as above, the associated super level set FN•(f, θ)
is a complex for all values of θ ∈ R.

Since we are assuming that there are only finite num-
ber of particles in our system, any force network filtra-
tion {FN•(f, θ) | θ ∈ R} contains only finitely many dis-
tinct complexes. We can use homology, in particular the
Betti numbers, to characterize the geometry of each of the
distinct force networks in the force network filtration.

To gain intuition into the force networks consider the
interaction force network indicated in Figure 6. Figure 6(a)
represents a collection of particles. The particles are rep-
resented by the vertices and the shown edges correspond
to the non-zero forces between the particles. Figure 6(b)
shows only the simplices of CNI for which the value of the
function f : CNI → R is positive. The value of f on the
edges is determined by the forces between the particles.
In Figure 6(a) the non-zero forces are color coded. In in-
creasing value the force is denoted by blue, cyan, green,
and red. The value of the function f is extended to the
vertices in Figure 6(c) and to the 2-dimensional simplicies
in Figure 6(d). The figures (e)-(h) indicate the associated
force network for non negative values of θ. If θ < 0 then
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: A representation of a simple interaction network FNN
I . (a) Vertices represent the particles and the edges correspond to the non zero

force between the particles. An increasing value of the force is denoted by blue, cyan, green, and red. (b) Collection of simplicies on which
the function CNI : f → R is positive. Extension of the function f to the vertices (c) and to the 2-dimensional simplicies (d). (e)-(h) The
complexes FN(f, θi) for positive θ equal to θ4 (red), θ3 (green), θ2 cyan and θ1 (blue), respectively.

FNI(f, θ) is a full graph on the vertices corresponding to
the particles and all the 2-dimensional simplicies are filled
in.

For example, referring to the force network filtration of
Figure 6 we can extract the following data:

(β0(FNI(f, red)), β1(FNI(f, red))) = (4, 0)
(β0(FNI(f, green)), β1(FNI(f, green))) = (4, 1)

(β0(FNI(f, cyan)), β1(FNI(f, cyan))) = (1, 3)
(β0(FNI(f, blue)), β1(FNI(f, blue))) = (1, 4).

It is worth noting that the H0 homology information for
FNI(f, red) and FNI(f, green) agree and yet the structure
of the components has changed dramatically.Two distinct
connected components become one and a new connected
component is formed. To capture this information we
make use of the fact that these complexes are nested by
inclusion. This leads to the concept of persistent homol-
ogy.

5. Persistent Homology

Given a force network filtration

FN(f, θ) := {σ ∈ CN | f(σ) ≥ θ} .

generated by a finite number of particles, there is a finite
number of values

0 = θ0 < θ1 < · · · < θK = max
σ∈CN

f(σ)

such that θk = f(σ) for some σ ∈ CN. Though the Betti
numbers characterize the topology of a given force network
FN(f, θk), the vector space structure of homology plays an
essential role in that it allows us to compare the topol-
ogy of FN(f, θk) with any other force network FN(f, θj).
Given θi < θj , FN(f, θj) ⊂ FN(f, θi) and hence there is an
inclusion map

ιθi,θj : FN(f, θj)→ FN(f, θi).

As is indicated at the end of Section 3, this defines maps

ιθi,θj ∗ : H∗(FN(f, θj))→ H∗(FN(f, θi))

on each homology group H∗. It is important to note that
ιθ1,θ2 ∗ need not be an inclusion map on the level of the
homology groups.

Persistent homology makes use of these inclusion maps
to compare topological features within different force net-
works. The first observation, while trivial, is essential

8



for our discussion and follows directly from the fact that
FN(f, θ) = ∅ for all θ > θK .

Lemma 5.1. If θ > θK , then H∗(FN(f, θ)) = 0.

Now consider a value θk such that v ∈ Hn(FN(f, θk))
and let v 6= 0. If n = 0 or 1, then v provides information
about the existence of components or loops, respectively,
in FN(f, θk). In light of Lemma 5.1, there exists a unique
largest threshold θb(v) ≥ θk with the property that there
exists vb ∈ Hn(FN(f, θb)) such that ιθk,θb

(vb) = v. The
geometric feature associated with v is said to have been
born at level θb(v).

It is also possible that for some θ < θk, ιθ,θk ∗(v) = 0.
In this case we define

θd(v) := max
{
θj | ιθj ,θk ∗(v) = 0

}
and we say that the geometric feature associated with v
dies at level θd(v). Given our construction, not every geo-
metric feature needs to die. In particular, for n = 0, 1,

Hn(FN(f, 0)) ∼= Hn(CN)

which, as the examples in this paper indicate, need not be
trivial.

As is made clear shortly being able to identify birth and
death levels to all geometric features is extremely useful.
Thus we make use of the following convention

if ι0,θk ∗(v) 6= 0, then θd(v) = −1.

A remarkable fact [12, 13] is that given a finite filtra-
tion it is possible to choose a consistent set of bases for
Hn(FN(f, θk)), k = −1, . . . ,K such that each basis ele-
ment has a well defined birth and death level (θb, θd).

It is also worth noting that equation (2) implies that
given any homology element v ∈ Hn(FNI(f, θk)), except
one, θb(v) ≤ θK and θd(v) ≥ 0. Furtheremore, if v̄ is a rep-
resentative of the unique exception, then v̄ ∈ H0(FNI(f, θk))
and (θb(v), θd(v̄)) = (θK ,−1)

The collection of all pairs (θb, θd) associated with n-th
homology group for the force networks are used to con-
struct the n-th persistence diagram for the scalar field
f : CN → [0,∞). For the simple force network filtration
presented in Figure 6 the associated persistence diagrams,
shown in Figure 7, have a straightforward geometric in-
terpretation. For the β0 diagram a birth level θb(v) cor-
responds to the value of a local maximum that is associ-
ated with the birth of a connected component measured
by the 0-homology class v. As θ decreases this compo-
nent grows until it meets, at a point associated with a lo-
cal minimum or saddle, another component. Assume this
other component is measured by the homology class v′ and
that the value of the local minimum (or saddle ) is θ. If
θb(v) < θb(v′), then θd(v) = θ. In this case, θb(v) − θd(v)
measures the difference in height between the local maxi-
mum and local minimum and hence this difference can be
used as a measure of how robust a feature is.

birth

de
at
h

✓1 ✓2 ✓3 ✓4

✓ 1
✓ 2

✓ 3
✓ 4

(a)

birth

de
at
h

✓1 ✓2 ✓3 ✓4

✓ 1
✓ 2

✓ 3
✓ 4

(b)

Figure 7: (a) β0 and (b) β1 persistence diagrams for the force network
shown in Figure 6(c)

Let us be more precise and analyze the persistence dia-
grams for the interaction force network FNI(f, θ) given by
Figure 6. We start with the β0 persistence diagram, see
Figure 7(a). There are no points with the birth coordi-
nate larger than θ4. This indicates the absence of compo-
nents experiencing force larger than θ4. Four points with
the birth coordinate θ4 correspond to the four connected
components that appear in FNI(f, θ4) (Figure 6(e)). The
death coordinates of the points differ. This indicates that
the components merge for different values of θ. The first
merging appears for θ3 (Figure 6(f)) and is represented
by the dot (θ4, θ3). Moreover a new component appeared
at the level θ3 and consequently merged with a preexist-
ing component at θ2 (Figure 6(g)) as indicated by the dot
(θ3, θ2). Also another two components that appear at θ4
disappear at θ3 hence there are two copies of the point
(θ4, θ2). Finally there is only one connected component
for all θ < θ2. This component appears for θ = θ4 but
does not disappear. In order to record it in the persis-
tence diagram it is represented by (θ4,−1).

Now we turn our attention to the β1 persistence dia-
gram. The first loop appears at θ3 (Figure 6(f)) and is
filled at θ2 (Figure 6(g)) as shown by the point (θ3, θ2) in
Figure 7(b). Another three loops appear at θ2 and per-
sist for all positive thresholds. Due to the definition of
FNI(f, θ) all the loops are filled in for θ = 0. So the loops
are represented by three copies of the point (θ2, 0). The
last loop appears at θ1 (Figure 6(h)) and also persists for
all positive thresholds hence the point (θ1, 0) belongs to
the β1 persistence diagram.

Definition 5.2. Let Θ = {θk | k = −1, . . .K} and

{FN(f, θk) | θk ∈ Θ, θk < θj ⇒ FN(f, θj) ⊂ FN(f, θk)}

be a force network filtration over a complex CN. The asso-
ciated n-th persistence diagram PDn(f,CN,Θ) is the multi
set consisting of the following points:

1. one point for each n-th persistence point (θk, θj);
2. infinitely many copies of points (θk, θk) on the diag-

onal.
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Condition (1) of Definition 5.2 arises because distinct
geometric features can appear and disappear at the same
thresholds and thus there may be multiple copies of the
same persistence pair. The necessity of condition (2) is
made clear shortly.

We conclude this section with an observation. Let PDn
denote the set of all n− th persistence diagrams and PD
the set of all persistence diagrams. Given a chain complex
CN, let M(CN, [0,∞)) denote the set of monotone maps
on CN. We can view persistence diagrams as a function

PD : M(CN,R)→ PD (4)

or equivalently a collection of functions PDn : M(CN,R)→
PDn defined by

PDn(f) = PDn(f,CN,Θ)

where Θ = {θk | k = −1, . . .K} consists of the finite set
of values obtained by f along with the convention that
θ−1 = −1 and θ0 = 0.

6. The space of Persistence Diagrams

The results concerning topological fidelity of the com-
plexes CN• have, up to this point, been mostly negative.
The introduction of persistence allows us to present pos-
itive results. In and of itself this suggests that force net-
work filtrations and their associated persistent homology
provide more appropriate metrics for understanding force
networks than measurements performed at single thresh-
olds. To obtain stability results we need to be able to
compare persistence diagrams.

Definition 6.1. Let PDn and PD′n be two n-th persistence
diagrams. The bottleneck distance between PDn and PD′n
is defined to be

dB(PDn,PD′n) = inf
γ : PDn→PD′

n

sup
p∈PDn

‖p− γ(p)‖∞,

where ‖(a0, b0) − (a1, b1)‖∞ := max {|a0 − a1|, |b0 − b1|}
and γ ranges over all bijections. Similarly, the degree-q
Wasserstein distance is defined to be

dW q (PDn,PD′n) =

 inf
γ : PDn→PD′

n

∑
p∈PDn

‖p− γ(p)‖q∞

1/q

.

As is indicated in [12], equipped with either the bot-
tleneck or degree-q Wasserstein distance PDn is a metric
space. From now on we always assume PD is one of these
metric spaces.

As is indicated in Figure 8 the ability to match points in
persistence diagrams with points on the diagonal suggests
that small perturbations lead to small distances between
persistence diagrams. In fact, it is proven in [12] that given
a complex CN and two monotone functions f, g : CN → R
the bottleneck distance satisfies

dB(D(f), D(g)) ≤ sup
x∈X
|f(x)− g(x)|. (5)

A similar result holds for the degree-q Wasserstein distance
[12, Section VIII.3]. A more formal statement is as follows.

(a) (b)

Figure 8: (a) Two functions. Blue represents a noisy perturbation
of red. (b) Associated persistence diagrams along with pairing of
persistence points satisfying definition of bottleneck distance.

Theorem 6.2. Given a complex CN let M(CN,R) denote
the set of monotone functions on CN equipped with the sup
norm ‖ · ‖∞. Then

PD : M(CN, [0,∞))→ PD

defined by (4) is a Lipschitz continuous map.

Corollary 6.3. The map PD : M(CNI , [0,∞)) → PD is
Lipschitz continuous.

Corollary 6.3 implies that a small change in the forces,
either through perturbation of the system or experimental
error results in a small change in the associated persis-
tence diagrams. This is the long promised stability result.
The failure of CNN

P and CND to be stable with respect to
perturbations follows from the fact that small changes of
particle positions can result in changes of the underlying
complex and thus Theorem 6.2 is not applicable. Figure 9
demonstrates that it is possible, using CNN

P , for an arbi-
trarily small change in the position of the particles to lead
to an order one change in the bottleneck distance.

7. Numerical Experiments

The discussions of the previous section provide a math-
ematical framework for studying force networks associated
with DGM. In this section we re-examine these concepts
in the context of simulated data. We begin with a brief re-
view of the numerical simulations and computational tools
employed. We then analyze persistent homology on a va-
riety of levels. First, we consider the stability of the per-
sistence diagrams obtained from the digital, position, or
interaction networks with respect to numerical and/or ex-
perimental error. Second, we discuss the question of relat-
ing the information in individual persistence diagrams to
physical properties of the DGM and how this information
is dependent on the particular choice of network. Finally,
we demonstrate that DGM made up of particles charac-
terized by different physical properties lead to different
persistence diagrams.
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Figure 9: An arbitrarily small change in positions can lead to an
order one change in the bottleneck distance. 6 particles with the
magnitude of the force field indicated. Thick edges have force value
2, thin edges have force value 1. (a) Because of configuration of
particles we see two loops. One loop appears at θ = 2, the second
loop appears at θ = 1. (b) A perturbation of the configuration in
(a) but the forces on the particles do not change. Only one loop
appears at θ = 1. (c) β1 persistence diagrams. The stars at (1,−1)
and (2,−1) correspond to the persistence points for (a) and the dot
at (1,−1) is the single persistence point for b.

7.1. Simulations Used
We perform a series of molecular dynamics (MD) sim-

ulations similar to our previous works [17, 14]. For the
present paper, we consider a set of about 2, 000 circular
particles contained in a square domain with rough walls
composed of monodisperse particles. The system is slowly
compressed allowing for a change of packing fraction, ρ,
between 0.6 and 0.9. Initially the particles are given ran-
dom velocities and are placed on a square lattice. The
equations of motion are integrated using a fourth order
predictor-corrector scheme. We implement the Cundall-
Strack model for static friction which includes normal and
tangential forces at the contact [18]. For frictionless sys-
tem, the contact force reduces to a normal force with a
spring and viscous damping term. In general, we use poly-
disperse particles where the particle sizes are chosen from a
uniform distribution with width rp = (rmax − rmin)/rave,
where rave is the mean particle radius. The coefficient
of restitution measuring energy loss is given the value of
en = 0.5, and the coefficient of static friction is either
µ = 0.5 for the frictional case or µ = 0.0 for the friction-
less one. See [17, 14] for more details.

For the most part we focus on a system of particles
with ρ ≈ 0.86. This is beyond the jamming transition
for all the simulations considered here and the particles
are packed close enough so that most of of the particles
belong to the same connected component of the position
network CNP . We use this data to address our first two
goals: understanding the robustness of the persistent ho-
mology measurements as a function of the choice of com-
plex; and understanding how the choice of complex effects
the persistent homology. Our final goal is to demonstrate
that persistent homology can capture and provide insight
into the geometry of the associated force network. To do
this we consider two particular cases where the force field

is known to be different [14]: a system of monodisperse
fricitonless particles (rp = 0.0, µ = 0.0) and a system of
polydisperse frictional particles (rp = 0.4, µ = 0.5).

For the ρ’s of interest, we extract the magnitude ψi,j
of the normal force interaction between any two particles
pi and pj . The values ψi,j completely determine the in-
teraction network FNI . To construct FNP and FND the
positions of the particles need to be extracted as well. The
value ψi assigned to the particle pi is the total force expe-
rienced by this particle, i.e.

ψi :=
∑

n
j|〈i,j〉∈CN

(1)
P

oψi,j =
∑
j

ψi,j .

To simplify the comparisons between packing fractions, we
normalize the function f : CN → R, defined in Section 4,
by dividing it by the average force f̂ defined as follows: for
the interaction force network

f̂I =
1

2M

N∑
i,j=1

ψi,j , (6)

and for the position and digital force networks

f̂P =
1
N

N∑
i=1

ψi =
1
N

N∑
i,j=1

ψi,j , (7)

where M is the number of non zero force interactions ψi,j
and N is the number of particles. Note that the average
number of contacts Z = 2M

N and

f̂P = Zf̂I . (8)

We have produced open source software [19] that is
used to encode this procedure and produce a force net-
works filtration {FN(f, θk) | θk ∈ Θ} (Θ is a function of
the complex). The persistent homology of each filtration is
computed using the open source software Perseus [20, 21].
We note that since the number of pixels representing a sin-
gle particle is much larger than one, the size of the digital
complex CND is considerably larger than the size of the
position or interaction complexes, implying that the com-
putational cost of analyzing CND is much larger than for
CNP or CNI . To give a sense of the time needed to per-
form these types of computations we remark that using a
2.53 GHz processor to compute the persistence diagrams
for the position force network, digital force network, and
interaction force network required 25, 97, and 43 seconds,
respectively.

7.2. Stability of Persistence Diagrams
Figure 10 shows the digital, position and interaction

networks of a system of monodisperse frictionless parti-
cles at ρ = 0.8696. The associated persistence diagrams
are depicted in Figure 11. In this section we use the fol-
lowing convention. If the feature persists until the zero
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(a) (b) (c)

Figure 10: Different force networks for mono disperse frictionless system at the packing fraction ρ = 0.86. (a) digital force network (b)
position force network (c) non zero simplices of the interaction force network.

threshold then we set the death coordinate to minus one.
This only impacts the persistence diagram for the inter-
action network, allowing for simple visual identification
of the defects. Since the information used to construct
these various networks is different it is not surprising that
the output differs. We investigate these differences below.
For the moment we concentrate on the more fundamen-
tal question: how stable is the information contained in
the persistence diagrams with respect to an error in input
data?

The numerical simulations and the extraction of parti-
cle positions and normal interparticle forces are done using
double precision floating point numerics. If we accept this
as “truth” then the simplest form of error has to do with
precision of measurement. With this in mind we introduce
measurement error by truncating the position data of the
particles to two or three significant digits (this impacts the
position and digital networks) and by truncating the mag-
nitude of the normal force acting between the particles to
two or three significant digits (this impacts the interaction
network as well). We then measure the distances between
the original and perturbed persistence diagrams using the
bottleneck and degree-1 Wasserstein metric. The results
are indicated in Table 1. Some values in the table are in
line with expectation. The relatively small values associ-
ated with the interaction network are predicted by Corol-
lary 6.3. The fact that the values for dW 1 are significantly
larger than dB for each type of network is not surprising
since the bottleneck distance measures the single largest
change in the network while the degree-1 Wasserstein is
sensitive to the many small local perturbations that may
be occurring.

Other values in Table 1 are less easily explained. We
have no theoretical results that explain the relative dif-
ferences in perturbations of distances between the persis-
tence diagrams associated with the position and digital
networks. The digital network was constructed using res-
olutions of 1000 × 1000 and 2000 × 2000 pixels. Given
the size of the particles in both cases each pixel represents
a measurement to approximately two significant figures.

We hypothesize that this explains the relatively small (as
compared with the position network) change in the persis-
tence diagrams obtained by truncating to 3 significant dig-
its. The sensitivity of the topological structure of cubical
approximations of circular disks demonstrated in Figure 3
suggests that the larger distance value for the 2000× 2000
digital complex with truncation at two significant digits
should not come as a surprise.

The different distance values for different digital com-
plexes raises another issue; how sensitive is the persistence
diagram to the resolution of the digital network? We con-
sider this issue using the system shown in Figure 10. Com-
puting with the original numerical data at a resolution of
2000×2000 pixels the β0 persistence diagrams for the dig-
ital networks are identical. Comparison of the β1 persis-
tence diagrams reveals that the number of loops is around
25% larger for the higher resolution. We have verified that
this increase is caused by formation of extra holes at the
places where the particles are close to each other; essen-
tially the phenomenon indicated in Figure 3(a).

7.3. Force Networks as a Function of Complex Type
Figures 10 and 11 demonstrate that the digital, posi-

tion and interaction force networks of a single system of
particles can be quite different. The idea behind the con-
struction of the digital and position networks is the same,
the difference arises from the fact they are based on dif-
ferent complexes that provide different approximations of
the geometry of the system of particles. Thus, to focus
on the essential differences we restrict our discussion to a
comparison of the position and interaction force networks.
Figure 12 provides an enlarged view for three different sub-
regions of the position and interaction force networks of
Figures 10(b) and 10(c). The position force network is de-
fined in terms of the vertices and thus the corresponding
figures include the magnitude of the force on the vertices.
The vertices are not highlighted in the interaction force
network since the value of the force on the edges is used
to define the values on the vertices.

12



Network Type
metric truncation interaction position digital (1000) digital (2000)
dB 3 0.00035 2.254 0.558 0.4724

2 0.0064 3.37 1.6742 4.302
dW 1 3 0.212 904.5 207.17 100.5

2 2.19 1398.3 851.9 3197.3

Table 1: The distance between the persistence diagram of original network and the persistence diagram after truncation of numerical data to
2 or 3 significant digits.

(c)

(b)

(a)

Figure 11: Persistence diagrams for mono disperse frictionless system
at the packing fraction ρ = 0.86 shown in Figure 10. Persistence
diagrams for (a) digital force network based on 1000×1000 pixels, (b)
position force network, and (c) non zero simplicies of the interaction
force network.

Figure 12(a) is typical of a region in which we see crys-
talline structure or equivalently a region over which there
are no defects. Observe that in this crystalline region the
normal forces for the position network are significantly
larger than those of the interaction network. The explana-
tion is that the force acting between the particles is small
in these regions, but each particle has six contacts so the
sum of the forces on each particle (which is what we are
recording) is high. Note that the forces are rather uni-
form in the crystalline zone and ψi ≈ 6 maxj {ψi,j}. Let
fI and fP denote the forces in the interaction and particle
networks, respectively. Then

fI(i) =
maxj {ψi,j}

f̂I
=
Z maxj {ψi,j}

f̂p
≈ Zψi

6f̂P
=
Z

6
fP (i).

Except for the perfect crystal the value of Z is less than
6. In or case Z = 3 and fI(i) ≈ 1

2fP (i)
We now consider a part of the domain where we find

sets of particles interacting by large forces, resembling a
’force chain.’ In this case, as can be seen along the red
line/orange string in Figure 12(b), the position network
tends to report a lower magnitude of force than the inter-
action network. To understand this recall that the packing
fraction is ρ = 0.86, which is above the jamming transition.
Thus we can assume that Z ≥ 3. Observe that along the
red/orange chain of particles in Figure 12(b) each particle
typically has contact with 2 or 3 other particles. Therefore
ψi ≤ 3 maxj {ψi,j}. By (8) and the inequalities stated in
this paragraph we obtain

fI(i) =
maxj {ψi,j}

f̂I
=
Z maxj {ψi,j}

f̂p
≥ ψi

f̂P
= fP (i).

An added effect is that a single continuous chain of strong
force interactions in the interaction force network is re-
ported to be a collection of shorter chains in the position
force network (see Figure 12(c)). An immediate conse-
quence is that we expect to see more points with relatively
large birth values in the β0 persistence diagram of the po-
sition force network than in the β0 persistence diagram
of the interaction network. This is confirmed by counting
the number of points the β0 persistence diagrams of Fig-
ures 11(b) and (c) (shown in Figure 11). with birth value
greater than a given value, for example 3.

Figure 12(c) demonstrates another important differ-
ence between the position and interaction networks. In
the interaction network a chain of particles experiencing
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Figure 12: Enlarged views, using the same color scheme, of three
different subregions of the interaction (left) and position (right) net-
works of Figures 10(b) and 10(c).

a strong force that splits will result in two chains consist-
ing of weaker forces. Weaker forces need not result from
splitting in the case of position networks, since the force
on the particles is determined by the force between the
neighboring particles. This relationship between splitting
and forces implies that loops are formed at lower force lev-
els in the interaction networks as compared to the position
networks which, in turn, implies that there should be fewer
points with relatively large birth values in the β1 persis-
tence diagram of the interaction network as compared with
the β1 persistence diagram of the position network. This
is corroborated by Figures 11(a) and (b).

Another striking difference between the position and
interaction networks is that in the β1 persistence diagram
of the position network the death value for all points is
−1, i.e. once a loop is formed it never dies. This is not the
case for the β1 persistence diagram of the interaction net-
work. There is no reason a priori why loops in the position
network cannot die, but a possible explanation is as fol-
lows. The death of loops is associated with the appearance
of 2-simplices which is indicative of crystalline structure.
Consider a single 2-simplex 〈vi, vj , vk〉 and assume that

f(〈vi〉) > f(〈vj〉) > f(〈vk〉).

Given the definition of the position force network, the ver-
tex 〈vi〉 appears first, followed by the vertex 〈vj〉 and the
edge 〈vi, vj〉. Finally, the vertex 〈vk〉, the edges 〈vi, vk〉 and

〈vj , vk〉 and the 2-simplex 〈vi, vj , vk〉 are all included at the
same step. Thus there is no opportunity for a loop con-
sisting of three edges to be generated. A similar argument
can be made for the interaction network and hence loops
that appear in the persistence diagrams must involve mul-
tiple edges. If we think of this sequence of edges as a force
chain, then the previous argument suggests that for the
position force network this chain is more likely to contain
edges of lower magnitude than in the interaction network.
At the same time, we have observed that in crystalline re-
gions the force magnitudes at the particles are larger in
the position network than the interaction network. These
two observations suggest that in the position network it
is difficult to construct a loop in a crystalline region that
surrounds vertices with lower forces.

A final observation from the diagrams is that the β0

persistence diagrams for the digital network have less points
than those for the position or interaction network. This
is due to the fact that, as is discussed in Section 2, our
construction of the digital network artificially inflates area
associated with each particle and hence it is possible for
distinct components in the position or interaction network
to form a single component in the digital network. This
effect is particularly relevant in the context of rattlers, i.e.
single particles that do not experience any force but are
contained within regions of particles experiencing nontriv-
ial normal forces. In contrast, the number of persistence
generators in β1 persistence diagrams is larger for digital
networks due to the formation of the artificial holes, again
as described in Section 2.

7.4. Comparison of different systems via persistence dia-
grams

The most direct means of applying persistence dia-
grams is to use them to distinguish and/or interpret the
global force structures of systems of DGM composed of
particles characterized by different physical properties. To
do this, we use the interaction network and consider two
systems, a monodisperse frictionless (rp = 0.0, µ = 0.0)
and a polydisperse frictional (rp = 0.4, µ = 0.5) system.

We begin by assigning physical meaning to the location
of persistence points in the persistence diagrams. Fig-
ure 13 shows a persistence diagram divided into five re-
gions. With the exception of the region labelled defects,
the location of the division lines is intended to be ei-
ther system specific or conceptual. We explain these di-
visions in the context of the interaction force networks
and persistence diagrams of the rp = 0.0, µ = 0.0 and
rp = 0.4, µ = 0.5 systems at packing fraction ρ = 0.86
as indicated in Figures 10(c) and 14, respectively. A more
complete analysis of DGM using these ideas is presented
in [14].

There are at least two different interpretations of the
points in the β0 persistence diagram that lie close to the
diagonal; the region we have labelled as roughness. The
first is to treat this as noise, i.e. a byproduct of the im-
perfect measurements of the normal forces between parti-
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Figure 13: Persistence diagram divided into regions. Explanation of
the regions is provided in the text.

Figure 14: Non-zero simplices of the interaction force network and
the β0 and β1 persistence diagrams for the rp = 0.4, µ = 0.5 system
at ρ = 0.86.

cles. While this may be appropriate for many experimen-
tal settings, the data represented in Figures 10, 11 and
14 comes from numerical simulations. Thus, the errors
are extremely small compared to the size of the normal
forces. This leads to the second interpretation, which we
adopt, that this region of the persistence diagram provides
a measurement of how rough or bumpy the normal force
landscape is, e.g. should we view the surface of the land-
scape as being made of glass or sandpaper? Alternatively,
the points in the β0 persistence diagram that lie outside
the roughness region provide a means of measuring how
non-uniform the normal force landscape is. Therefore by
comparing 11(c) and 14 we conclude that rp = 0.4, µ = 0.5
system is rougher than the rp = 0.0, µ = 0.0.

To understand the region labelled as strong, observe
that the image in Figure 14 of the forces for the rp =
0.4, µ = 0.5 system does not contain any red simplices,
implying that there are no extremely strong force interac-
tions. In contrast, such red simplices are present in the
rp = 0.0, µ = 0.0 system displayed in Figure 10(c). This
difference can be inferred from the β0 persistence diagrams
shown in Figures 11 and 14. As is indicated in Section 7.1
the function f : CN→ R is normalized. For FNI the value
1 represents the average interaction force while for FNP
and FND it is the average total force experienced by parti-
cles. For the rp = 0.4, µ = 0.5 system there are no persis-
tence points with the birth value larger than 3 and only a
few points with birth value larger than 2.5. Thus, depend-
ing on the exact cut-off there are no or at most few points
in the region marked strong for the rp = 0.4, µ = 0.5
system, in clear contrast to the rp = 0.0, µ = 0.0 system.

If we take the left division marker for the medium
regime in Fig. 13 to be 1, then the persistence points in
the medium and strong regions provide information about
the geometry of what the DGM community typically refer
to as a force chain. In the case of the rp = 0.4, µ = 0.5
system, we see a large number of β0 persistence points
that are born between 1 and 2.5 and die before 0.8. This
suggests a landscape consisting of moderately high peaks
separated by moderately high valleys. To continue the
geographic metaphor, the rp = 0.4, µ = 0.5 force chain
network takes place on a high plateau. In contrast, the
rp = 0.0, µ = 0.0 system has fewer moderately high peaks,
but they are separated by much deeper valleys since there
are points with death values below 0.6. Therefore, we con-
jecture that the landscape for the rp = 0.0, µ = 0.0 system
has fewer peaks (but some of them are strong) than that
of the rp = 0.4, µ = 0.5 landscape, and these peaks are
in general much more isolated and more likely to be sepa-
rated by valleys of much weaker forces.

Finally, we consider the region labelled defects. In a
β0 persistence diagram each point in this region corre-
sponds to a distinct connected component. In the context
of the rp = 0.4, µ = 0.5 system these mostly correspond
to rattlers. This conclusion is obtained by observing that
aside from the single persistence point with a large birth
force, that corresponds to the component containing most
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of the particles, the persistence points in the defects re-
gion have a birth value of 0, indicating that they are not
experiencing any normal force. This is quite different from
the rp = 0.0, µ = 0.0 system. In this case we have per-
sistence points in the defects region with non-zero birth
forces. This implies the existence of small clusters of parti-
cles (a single separated particle cannot have an interaction
force) that are not interacting with the dominant particle
cluster. Close inspection of the interaction force network
in Figure 10(c) reveals these small components.

The defects region of the β1 persistence diagrams pro-
vides additional information. As indicated in Section 7.3,
β1 persistence points lie in the defects region if and only
if they correspond to loops that enclose non-crystalline re-
gions. There are about twice as many persistence points
in the defects region in the rp = 0.4, µ = 0.5 system as
compared to the rp = 0.0, µ = 0.0 one. This suggests that
the rp = 0.4, µ = 0.5 system is more likely to support
defects than the rp = 0.0, µ = 0.0 one. At the same time
there are 50% more points in β1 persistence diagram that
are not in the defects region for the polydisperse frictional
system. These persistence points correspond to loops that
are filled in by 2-dimensional simplices and thus must be
contained within regions of crystallization. Thus this dif-
ference in the number of persistence points suggests that
the polydisperse system contains a multitude of small crys-
talline regions as opposed to the rp = 0.0, µ = 0.0 system.
This is corroborated by a careful examination of the force
networks in Figures 10(c) and 14.

Up to this point we have focussed on the relationship
between individual persistence diagrams and the physical
characteristics of the DGM. While understanding this cor-
respondence is essential to the claim that persistent homol-
ogy provides a potentially important tool in the analysis
of DGM, we believe that the most significant value of this
technique will come through the analysis of large sets of
persistence diagrams. We present a simple example of this
idea here, leaving more detailed investigations for future
work.

We extract a number (one hundred) of consecutive
frames starting at ρ = 0.87 and ρ = 0.79 for the two
considered systems, respectively (both systems are above
jamming transition, see [14]). The increment of ρ between
the consecutive frames is roughly 4× 10−5. We then com-
pute the distance between every pair of persistence dia-
grams. These are presented in Fig. 15 in the form of a
heat map. The first hundred points correspond to the se-
quence of samples from the rp = 0.0, µ = 0.0 system, and
the second hundred points are from the rp = 0.4, µ = 0.5
system. The distinct blocks of blue and red are what we ex-
pect; the distances between persistence diagrams from the
rp = 0.0, µ = 0.0 system are small (blue), the distances
between persistence diagrams for the rp = 0.4, µ = 0.5
system are small (blue), but the distances between per-
sistence diagrams for the rp = 0.0, µ = 0.0 and the
rp = 0.4, µ = 0.5 system are large (red).

Another interesting observation comes from carefully

(a) (b)
Figure 15: Distances between 100 consecutive frames of rp =
0.0, µ = 0.0 and rp = 0.4, µ = 0.5 systems. First hundred frames
correspond to rp = 0.0, µ = 0.0 and the second hundred frames are
from rp = 0.4, µ = 0.5. a) Bottleneck distance b) Wasserstein dW1

distance.

examining and comparing the blue regions. The lighter
shades of blue indicate that the distances between the per-
sistence diagrams corresponding to the rp = 0.0, µ = 0.0
system are larger than the distance for the polydisperse
system. This indicates that the rp = 0.0, µ = 0.0 system
evolves more and faster after the jamming transition than
the polydisperse system.

8. Conclusion

Based on different methods for collecting data we have
defined three different chain complexes and used them to
construct force chain networks for particulate systems. Us-
ing the force chain networks we compute persistence dia-
grams and we discuss how one can use persistent homology
to extract information about the geometric structure of the
force distributions between the particles. We provide both
theoretical and experimental arguments to show that the
persistence diagrams obtained from interaction force net-
works are the most robust with respect to experimental
or numerical errors. Using numerical data obtained from
molecular dynamics simulations of a system of particles
being slowly compressed we show that the persistence di-
agrams associated to the different force networks can have
significant differences. This in turn implies that the geom-
etry of the force distributions observed depends upon the
methods by which the system is sampled. We provide some
intuition concerning how in general the sampling method
affects the geometry. We also demonstrate that using per-
sistent homology of any of the three force networks allows
one to draw meaningful distinctions between the behavior
of the force distributions for systems made up of particles
with different geometric and physical properties.
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