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Algebraic topology �homology� is used to analyze the state of spiral defect chaos in both laboratory
experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals
topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are
found in different flow fields in the simulations and are robust to substantial alterations to flow
visualization conditions in the experiment. However, the asymmetries are not observable using
conventional statistical measures. These results suggest homology may provide a new and general
approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical
models. © 2007 American Institute of Physics. �DOI: 10.1063/1.2800365�

I. INTRODUCTION

Recent technical advances in experimental fluid mechan-
ics now make it possible to measure complex dynamical be-
havior with high resolution in space and time.1 Similarly,
modern computational fluid dynamics methods permit mod-
elling of complex chaotic and turbulent flows.2 The data sets
produced by such experiments and simulations can be enor-
mous; as a result, interpreting the results becomes a signifi-
cant challenge. In particular, characterizing the geometric
properties of complex spatiotemporal patterns in large data
sets has been difficult because, to date, no general method-
ology has existed for extracting geometric signatures.

Algebraic topology provides a tool for describing global
geometric properties of structures. Devised by Poincaré3 for
use in global nonlinear analysis, algebraic topology origi-
nally used as input analytically defined objects �e.g., level
sets of differentiable functions� to produce an output in the
form of algebraic quantities which convey topological infor-
mation about the input. In modern times, input objects can be
expressed either as simplicial or cubical complexes. In fluid
mechanics and in most fields of science and engineering,
cubical representations often arise naturally in both experi-
ments �raw image data represented as square pixels or cubic
voxels� and simulations �fields computed at gridpoints on
square or cubic lattices�. A package of computer programs
has been developed to perform computations of algebraic
topology �computational homology� on cubical complexes in
arbitrary dimensions. This suite of tools, called CHOMP

�Computational Homology Project� is freely available for
download via the Web.4

We report here the first use of computational homology
to characterize data obtained from a laboratory experiment.
We analyze Rayleigh-Bénard convection in the state known
as spiral defect chaos,5 which is widely considered a para-
digm for the little understood phenomenon known as spa-
tiotemporal chaos �see, for example, Ref. 6�. In planform,
patterns of spiral defect chaos, which are observed just above
convective onset in low Prandtl number ��1� fluids, are
composed of convection rolls deformed into numerous rotat-
ing spirals and riddled with dislocations, disclinations, and
grain boundaries. Spiral defect chaos has been quantitatively
described by a wide variety of approaches, including struc-
ture factors, correlation lengths and times as well as wave
number, spectral, and spiral number distributions7 �see also
Ref. 1 and references therein�.

Thermal convection is frequently modeled using the
Boussinesq approximation, which assumes that the tempera-
ture dependence of the fluid properties can be neglected, ex-
cept for the temperature-induced density difference in the
buoyant force that drives the flow. However, non-Boussinesq
effects can arise in flows both in the laboratory and in natural
settings. At convective onset, the subcritical bifurcation to
hexagonal patterns is a clear signature of non-Boussinesq
effects.8 �Straight convection rolls arise at onset from a su-
percritical bifurcation in Boussinesq Rayleigh-Bénard
convection.9� Non-Boussinesq effects can be described quan-
titatively using perturbation theory near onset; in this regime
they are characterized by parameter Q introduced by Busse.8

Values of Q� �1 indicate significant non-Boussinesq ef-
fects; Q=0 for Boussinesq convection. As changes in control
parameter move the convective flow well away from onset,
non-Boussinesq effects typically become more important and
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are more difficult to characterize theoretically and experi-
mentally.

II. EXPERIMENTAL PROCEDURE

We measure convective flow in a horizontal layer of
compressed �3.2 MPa absolute pressure� CO2 gas of depth
d=0.0690±0.0005 cm. The layer is bounded above by a
5 cm thick sapphire window and below by 1 cm thick gold-
plated aluminum mirror. The lateral walls are circular,
formed out of an annular stack of filter paper sheets 3.80 cm
in diameter. An electrical resistive heater is used to heat the
bottom mirror to a temperature of Th, and the top window is
cooled to a fixed temperature of Tc=21.20±0.02 °C by cir-
culating chilled water. When the temperature difference, i.e.,
�T=Th−Tc, across the gas exceeds a critical temperature dif-
ference �Tc=4.0±0.1 °C, the onset of fluid motion occurs.
The Prandtl number Pr is 0.97. In the experiments, the sys-
tem control parameter, the reduced Rayleigh number �
= ��T−�Tc� /�Tc, is increased above onset through a range
where spiral defect chaos occurs. The characteristic time
scale, the vertical diffusion time tv, is approximately 2 s.

The flows are visualized using the shadowgraph
technique.10 Time series of shadowgraph images �Figs. 1�a�
and 1�b�� with a spatial resolution of 515�650 pixels are
captured under computer control at a rate of 11 Hz using a
12-bit digital camera interfaced to a frame grabber. The im-
ages are prepared for analysis by subtracting a background
image of the fluid below onset and using digital Fourier fil-
tering to remove high wave number components due to cam-

era spatial noise. The median value of intensity for all pixels
in the image is then determined and used as a typical thresh-
old to characterize each pixel as describing either hot upflow
or cold downflow in the convection pattern. The resulting
time series of thresholded 1-bit images are used for comput-
ing homology.

III. NUMERICAL SIMULATIONS

Our direct numerical simulations of the Boussinesq
equations employ a pseudospectral code developed by Pesch
and co-workers.11,12 The code uses Fourier modes in the
horizontal direction and appropriate combinations of trigono-
metric and Chandrasekhar functions that satisfy the top and
bottom boundary conditions in the vertical direction.8 All
runs are performed with six vertical modes and 128�128
horizontal Fourier modes in a square domain with side length
equal to 16 times the pattern wavelength at convective onset.
The time step is typically �v /500. For our analysis, the flows
are represented by 128�128 images �Figs. 1�c� and 1�d�� of
the temperature field or the vertical velocity component. The
images are typically stored every 2�v. The median value of
the flow field quantity �temperature or vertical velocity� for
each image is determined and used as a threshold to charac-
terize each gridpoint as describing hot upflow or cold down-
flow. Thus, as in the laboratory experiment, the resulting
time series of thresholded 1-bit images are used for comput-
ing homology.

In the simulations, we describe non-Boussinesq effects
arising from the temperature dependence of material proper-
ties by a Taylor expansion truncated at leading order beyond
the Boussinesq approximation. The simulations are per-
formed at constant mean temperature �Th+Tc� /2; the expan-
sion is carried out about the mean temperature. In this case,
the parameter Q �see Ref. 8� is given by

Q = �
i=0

4

�i
cPi, �1�

where the quantities Pi are linear functions of Pr−1, and the
non-Boussinesq coefficients �i

c give the difference of the re-
spective fluid properties across the layer at threshold ��=0�.
For simulations away from onset ���0�, the � dependence
of non-Boussinesq effects is characterized by coefficients
�i=�i

c�1+��. �See Ref. 13 for more details.� In non-
Boussinesq simulations, all the �i

c are retained, while in the
Boussinesq simulations, �i

c are set to 0. In all simulations, we
fix �=1.4 and set Pr=0.8.

IV. RESULTS

Formally, homology is computed for a topological space
X of N dimensions by systematically assigning a sequence of
Abelian groups Hk�X� �k=0,1 ,2 , . . . ,N−1� to X. For our
purposes, it is sufficient to take Hk to be products of the
integers, i.e., Hk�X�=Z�k�X�, where the integer dimensions of
the groups �k�X��0 are also known as the Betti numbers. In
this work we focus solely on �k�X� as the output of the
homological analysis; each �k�X� describes a topological

FIG. 1. �Color online� Images of spiral defect chaos convection are shown
from laboratory experiments �a, b� and numerical simulations �c, d�. Shad-
owgraph images from the experiments illustrate the convective flows at �a�
�=1.0 and �b� �=2.5. The midplane temperature field is shown at �=1.4 for
simulations carried out under �c� Boussinesq �Q=0� and �d� non-Boussinesq
�Q=4.5� conditions. In all cases, dark regions in the images indicate the hot
upflows and bright regions indicate cold downflows in the convective
patterns.
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property of X. Thus, the net result of this analysis is the
characterization of X by a set of N non-negative integers.
�See Ref. 4 for more details.�

From each 1-bit image in time series from either experi-
ments or simulations, two distinct, topological spaces are
obtained: Xh, where the hot upflow pixels have a nonzero
value, and Xc, where the cold downflow pixels have a non-
zero value. Xc and Xh, which are two-dimensional, are input,
in turn, into the homology codes, which subsequently output
two Betti numbers for each space: �0h, �1h for the hot up-
flows, and �0c, �1c for the cold downflows. �0h ��0c� counts
the number of distinct components; i.e., the number of re-
gions of hot upflow �cold downflow� that are separated from
similar regions in a given pattern Xh �Xc� �Figs. 2�a� and
2�b��. �1h ��1c� counts the number of holes in the hot up-
flows �cold downflows� in a given pattern Xh �Xc� �Fig. 2�c�
and 2�d��. With the package CHOMP, computing the homol-
ogy of Xc and Xh corresponding to each image takes about
1 s on a 2.2 Ghz CPU.

Figure 2 shows a striking result: in the experiments, hot
upflows are topologically quite distinct from cold down-
flows. Specifically, there are more cold downflow compo-
nents than hot upflow components ��0c��0h�. Moreover, the
hot upflow regions contain more holes than the cold down-
flow regions ��1h��1c�. This distinction is not revealed us-
ing standard statistical measures of the pattern. For example,
the mean area occupied by upflow is equal to that occupied
by downflow by construction �when the threshold is set to
the median pixel intensity in the original image.� Wave num-
ber distributions obtained from Fourier analysis of Xh and Xc

show no discernible differences.
These measurements of topology are robust to variations

in the choice of threshold. The choice of the median pixel
intensity as the threshold to separate upflows from down-
flows is physically well-motivated but somewhat arbitrary. In
practice, any reasonable choice yields similar results. For
example, for Xh and Xc in Fig. 2, choosing the mean pixel
intensity �which is larger than the median intensity by ap-
proximately 5% of full scale� as the threshold yields nearly
identical Betti numbers: �0h=22, �0c=53, �1h=23, and �1c

=3.
Time series of the Betti numbers exhibit fluctuations

about well-defined time-average values �Fig. 3�. The fluctua-
tions are primarily a global signature of the complex spa-
tiotemporal behavior of spiral defect chaos. Mean flow in-
duced by curvature in the roll pattern leads to regions of
local compression or dilatation throughout the pattern. Com-
pression often leads to merging of neighboring rolls, while
the dilatation results in the formation of a new rolls in the
pattern; these processes are closely related to secondary in-
stability mechanisms for ideal straight rolls.1,8 These local
events drive further changes in pattern curvature, thereby
leading to a continually evolving pattern with fluctuating to-
pology. The Betti numbers are a global measure of the topo-
logical changes, and therefore, are dependent on the local
processes, for which theories of defect dynamics have been
proposed.14 How Betti numbers are related to defect dynam-
ics remains an open question; for our purposes, we focus on
the time-average values of the Betti numbers

��̄0h , �̄1h , �̄0c , �̄1c�, which we find to be stationary for
fixed �.

The measurements of �̄ are robust with respect to flow
visualization conditions. It is well known that shadowgraphy
can introduce significant nonlinearities and image artifacts
�e.g., caustics�; the strength of these effects depend on the
effective optical distance z1 of the shadowgraph system.10

FIG. 2. �Color� Computation of the homology for the experimental data in
Fig. 1�b� yields a sequence of Betti numbers �, which can be readily inter-
preted visually. The number of distinct components is indicated by the ze-
roth Betti number for cold downflows �a� �0c=49 and for hot upflows �b�
�0h=24. �Different colors are used in �a� and �b� to distinguish a given
component from its nearest neighbors.� The number of holes is given by the
first Betti number for cold downflows �c� �1c=2 and for hot upflows �d�
�1h=20. �Each hole is colored red in �c� and �d�.�

FIG. 3. Time series of �a� the zeroth
Betti numbers �0h �open circles� and
�0c �filled circles�, and �b� the first
Betti numbers �1h �open diamonds�
and �1c �filled diamonds� are obtained
from laboratory experiments at �=2.5.
Time is scaled by tv; the time interval
between samples is tv /2.
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We have checked for possible sensitivity to shadowgraphy
visualization by conducting a series of experiments where
the conditions of the convective flow were fixed and image
time series were captured for different values of z1. Figure 4
shows that the mean Betti number changes only slightly as z1

is varied over nearly an order of magnitude. Additional ex-
perimental data �not shown� demonstrate that a change of
sign in z1 �which changes hot upflows �cold downflows�
from bright �dark� to dark �bright�� does not affect the deter-

mination of �̄.
The differences between the mean Betti numbers for hot

upflows �̄0h, �̄1h and for cold downflows �̄0c, �̄1c become
more substantial as � increased above convective onset �Fig.
5�. For �	2.0, the mean numbers of components and holes

are roughly equal for both upflows and downflows. More-
over, the number of holes in downflows/upflows is effec-
tively zero for �	0.7, where the patterns consist essentially
of straight rolls. Near the onset of spiral defect chaos �at
approximately �=0.7 in our experiment, the number of holes
for upflows/downflows becomes nonzero. For ��2.0, the
difference in the average component number grows signifi-
cantly as both the number of cold components grows and the
number of hot components shrinks. The behavior in the num-
ber of holes is somewhat different; for �	2.0, the number of
holes increases significantly in the hot upflows but decreases
only weakly for the cold downflows.

FIG. 4. The mean Betti numbers are plotted as a function of the effective
optical distance z1 of the shadowgraph system in laboratory experiments
performed at ��2. For each data point, the median pixel intensity of the raw
shadowgraph images was used as the threshold for the homology analysis.

FIG. 5. The mean zeroth Betti numbers �̄0h �open circles� and �̄0c �filled

circles�, and first Betti numbers �̄1h �open diamonds� and �̄1c �filled dia-
monds� are shown as a function of � for data from laboratory experiments.
Each data point is obtained by averaging the Betti numbers from analysis of
18 000 images corresponding to an observation time of approximately
1800 tv.

FIG. 6. Time series of the zeroth Betti
numbers �0h �open circles� and �0c

�filled circles�, and the first Betti num-
bers �1h �open diamonds� and �1c

�filled diamonds� are obtained from
numerical simulations at �=1.4. The
midplane temperature field from
Boussinesq simulations is used to ob-
tain time series of �a� �0h, �0c and �b�
�1h, �1c. The midplane temperature
field from non-Boussinesq simulations
is used to obtain time series of �c� �0h,
�0c and �d� �1h, �1c. The vertical ve-
locity component at z=−0.25 from
non-Boussinesq simulations is used to
obtain time series of �e� �0h, �0c and
�f� �1h, �1c. �The midplane is located
at z=0 and the bottom boundary is lo-
cated at z=−0.5.� Time is scaled by tv.
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These experimental observations, taken as a whole, sug-
gest the observed asymmetries in the Betti numbers may be
due to the breakdown of the Boussinesq approximation �and
corresponding breaking of the Boussinesq symmetry�. To
check this hypothesis, we conducted two simulations under
identical conditions except one simulation was Boussinesq
�Q=0� and the other simulation was non-Boussinesq �Q
=4.5�. The Betti number time series for the Boussinesq simu-
lation shows little distinction in the Betti numbers �Figs. 6�a�
and 6�b��. By contrast, examination of the same field variable
in non-Boussinesq simulation �Figs. 6�c� and 6�d�� shows
distinct differences in the Betti numbers that are qualitatively
in agreement with the experimental observations.

Different flow fields extracted from the simulation ex-
hibit similar qualitative behavior in the time-averaged Betti
numbers �Figs. 6�c�–6�f��. We examined both the tempera-
ture field and the vertical velocity components sampled at the
vertical positions z=0 �the midplane of the convection cell�,
z=−0.25 and z= +0.25. �The top and bottom boundaries are
located at z= +0.5 and z=−0.5, respectively.� The quantita-
tive values for the time-averaged Betti numbers differ
weakly between different projections of the convective flow.
However, every projection exhibits the same qualitative re-
sult; namely, in a given projection of Boussinesq convection,
the time-averaged Betti numbers for hot upflows and cold
downflows are the same, while each projection of non-
Boussinesq exhibits the same Betti number asymmetries.

V. CONCLUSIONS

We conclude that the breakdown of the Boussinesq ap-
proximation can be readily observed in data from convection
experiments and simulations by analyzing the topology using
computational homology. It might be argued the use of ho-
mology constitutes an “excessive use of force” for the two-
dimensional patterns analyzed here since the counting of fea-
tures such as components and holes could be accomplished
by other means. Nevertheless, these upflow/downflow topo-
logical asymmetries, which had remained unnoticed despite
decades of experimental study of convective flows, were un-
covered by a systematic analysis suggested by the homology
formalism. Moreover, the homology analysis outlined here
can be readily extended to higher dimensions where less so-
phisticated approaches will likely fail. For example, three-
dimensional complexes can be formed from the image data
used here by creating “time-blocks” of data with two spatial
dimensions and one time dimension; such data are expected
to contain new topological features that capture dynamical
information.15

Our results are consistent with well-known symmetries/
asymmetries of convective flows that arise at onset. Physi-
cally, non-Boussinesq effects at onset are commonly associ-
ated with the temperature dependence of the fluid’s physical
properties.8 In particular, for convection in gases considered
here, the kinematic viscosity typically increases with increas-
ing temperature; this particular temperature dependence
leads to stable flow at onset in the form of “down-hexagons,”
which have cold downflow in the center of each hexagon.
The zeroth Betti numbers of a pattern containing M hexago-

nal convection cells in an ordered array can be easily deter-
mined. In gas convection, the cold downflow at the center of
each hexagon will be isolated for all other cold downflows,
yielding �0c=M, while the hot upflows around the edges of
all hexagons will be connected, yielding �0h=1. This Betti
number asymmetry ��0c��0h� is consistent with the results
for our non-Boussinesq experiments and simulations far
from onset, where the temperature-dependent variation of
fluid properties is of larger magnitude but has the same
“sign” as the variations near onset. Based on these consider-
ations, we conjecture that a homological analysis of far-
from-onset non-Boussinesq flows in typical liquids �e.g., wa-
ter� should exhibit the Betti number asymmetry �0h��0c,
since this asymmetry would be consistent with the typical
appearance of “up-hexagons” at onset of non-Boussinesq
convection in such fluids. �The physical origin up-hexagons
in liquids can be traced to the typical temperature depen-
dence of the kinematic viscosity, which usually decreases
with increasing temperature.�

Our results suggest that computational homology might
be a useful tool in a wide variety of cases in fluid dynamics.
For example, in the atmospheric sciences, where extensive
use is made of the Boussinesq approximation, homological
analysis may provide new ways to characterize atmospheric
data. The use of homology need not be limited to convection;
this approach may be applied in any fluid flow where quan-
titative characterization of complex data is needed.
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