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VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES∗

SARAH DAY† , JEAN-PHILIPPE LESSARD‡ , AND KONSTANTIN MISCHAIKOW§

Abstract. One of the most efficient methods for determining the equilibria of a continuous
parameterized family of differential equations is to use predictor-corrector continuation techniques.
In the case of partial differential equations this procedure must be applied to some finite dimensional
approximation which of course raises the question of the validity of the output. We introduce a
new technique that combines the information obtained from the predictor-corrector steps with ideas
from rigorous computations and verifies that the numerically produced equilibrium for the finite
dimensional system can be used to explicitly define a set which contains a unique equilibrium for
the infinite dimensional partial differential equation. Using the Cahn-Hilliard and Swift-Hohenberg
equations as models we demonstrate that the cost of this new validated continuation is less than
twice the cost of the standard continuation method alone.
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1. Introduction. The first step in understanding the dynamics of a nonlinear
system of differential equations

(1.1) ut = f(u, ν)

on a Hilbert space is to identify the set of equilibria E := {(u, ν) | f(u, ν) = 0}. For
many applications this can only be done using numerical methods. In particular,
continuation provides an efficient technique for determining elements on branches of
E . Recall, that this method involves a predictor and corrector step: given, within a
prescribed tolerance, an equilibrium u0 at parameter value ν0, the predictor step pro-
duces an approximate equilibrium ũ1 at nearby parameter value ν1, and the corrector
step, often based on a Newton-like operator, takes ũ1 as its input and produces, once
again within the prescribed tolerance, an equilibrium u1 at ν1.

With any numerical method there is the question of validity of the output as
compared with the cost of computation. The goal of this paper is to argue that
for a large and important class of partial differential equations the cost of validating
the existence and uniqueness of equilibria is small when compared to the cost of
identifying potential equilibria by means of a continuation method. Our interest
in this question was motivated by the increasing development of computer-assisted
proofs in the dynamics of infinite dimensional systems (see [3], [10] and references
therein). As mathematicians we are willing to argue forcefully for the importance
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of rigorous verification and thus marginalize the cost. However, in reality for many
applications, researchers are often interested in investigating a variety of model partial
differential equations at a multitude of parameter values to gain scientific insight
rather than an answer to a particular question. This places a premium on minimizing
computational cost, often leading to acceptance of the validity of numerical results
simply based upon the reproducibility of the result at different levels of refinement.
As we shall argue, the results of this paper suggest that this dichotomy need not
exist and we provide examples wherein it is demonstrated that by judicious use of the
computations involved in the continuation method it is cheaper to validate the results
than to re-perform the continuation computation. We refer to the method we propose
as validated continuation. As is made clear towards the end of the introduction,
validated continuation is slightly weaker and computationally cheaper than rigorous
continuation.

To the best of our knowledge this is the first attempt to integrate the techniques
of rigorous computations with a continuation method, thus we focus on a clear pre-
sentation of the ideas as opposed to presenting the results in the most general possible
setting. We make use of spectral methods as they provide us with considerable control
on truncation errors. To be more precise, assume that (1.1) takes the form

(1.2) ut = L(u, ν) +
d∑

p=0

cp(ν)up

where L(·, ν) is a linear operator at parameter value ν and d is the degree of the
polynomial nonlinearity. Typically, c1(ν) = 0 since linear terms are grouped under
L(·, ν). Expanding (1.2) using an orthogonal basis chosen appropriately in terms
of the eigenfunctions of the linear operator L(·, ν), the particular domain and the
boundary conditions, results in a countable system of differential equations on the
coefficients of the expanded solution.

To simplify the exposition, let us assume the expansion takes the form

(1.3) u̇k = fk(u, ν) := µkuk +
d∑

p=0

∑
P

ni=k

(cp)n0un1 · · ·unp k = 0, 1, 2, . . .

where µk = µk(ν) are the parameter dependent eigenvalues of L(·, ν) and {un} and
{(cp)n} are the coefficients of the corresponding expansions of the functions u and
cp(ν) respectively with un = u−n and (cp)n = (cp)−n for all n. In order to simplify
the notation, for a fixed parameter ν, we use f(u) to denote f(u, ν). The continuation
method is applied to the m-dimensional system of ODEs of the form

(1.4) u̇k = µkuk +
d∑

p=0

∑
P

ni=k

|ni|<m

(cp)n0un1 · · ·unp k = 0, 1, . . . ,m− 1.

obtained by performing a Galerkin projection on (1.3). It is this truncation that intro-
duces the most substantial concern for the validity of the results of the continuation
method. In Section 3 we present estimates that provide us with bounds on the errors.
We obtain these bounds under the assumption of power decay rates in the coefficients
{un}. Of course, such decay rates are directly related to the spatial smoothness of the
equilibria which in turn is governed, at least in part, by the linear operator L(·, ν).
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The theoretical justification for our proof of existence and uniqueness of equi-
libria is based on a component-wise version of the Banach fixed point theorem (see
Theorem 2.1) which itself represents a minor modification of a result of Yamamoto
[9, Theorem 2.1]. A similar formulation can also be found in [4]. Recall that to apply
the Banach fixed point theorem one must have a contraction mapping T : X → X.
With this in mind, we can state that it is appropriate to view our approach as a
method by which the Newton-like iteration of the corrector step in the continuation
process is used to construct a set X and the above estimates are used to verify that an
appropriate generalization of the Newton-like operator is in fact a contraction. More
precisely, let ū be a numerical zero obtained from (1.4). In the orthogonal basis used
to obtain (1.3) consider the set X = ū + W (r) of ū where W (r) is of the form

W (r) =
m−1∏
k=0

[−r, r]×
∞∏

k=m

[
−As

ks
,
As

ks

]
.

Observe that s indicates the decay rate of the coefficients and r is referred to as the
validation radius. Our strategy which is described in detail in Section 3 is to produce
a set of radii polynomials, {Pk(r)}k=0,1,..., whose coefficients are given explicitly in
terms of the constants As, s, and (1.3). Theorem 3.4 guarantees that if there exists
a validation radius r > 0 such that Pk(r) < 0 for all k, then there exists a unique
equilibrium solution to (1.2) in the set X = ū + W (r) built around the numerical
equilibrium ū produced by the continuation procedure. It is important to remark that
the conditions of Theorem 3.4 can be checked with a finite number of calculations.

As is indicated above the focus of this paper is on the computational efficacy of
validated continuation, and hence, the following organization of the material. Sec-
tion 2 contains the statement and proof of the aforementioned component-wise version
of the Banach fixed point theorem, Theorem 2.1, without any indication of how this
result can be used in practice. Section 3 provides the opposite extreme, an explicit set
of formulas and steps and the assertion that their successful implementation leads,
via Theorem 3.4, to the existence of a unique equilibrium in a specified set. The
justification of this assertion and the relationship between Theorems 2.1 and 3.4 is
presented in Section 6. However, presenting the formulae in this fashion has two
advantages. First, they contain all the necessary information should the reader wish
to independently code and test the techniques suggested in this paper. Second, it
allows for the presentation in Section 4 of the comparison of the computational costs
between traditional and validated continuation.

It should be emphasized that how one should best compare the costs between
the two methods of continuation is not completely clear. In the standard approach
m, the dimension of the system on which continuation is performed, is fixed. Thus
traditionally, a particular Galerkin projection dimension is chosen and continuation
is performed. The results are checked by choosing a higher dimensional projection,
re-performing the continuation and then deciding if the two calculations agree within
a certain level of numerical tolerance. In validated continuation, m becomes a vari-
able. In particular, if validation fails then one has the option of choosing a higher
dimensional Galerkin projection. Equally important, failure of validation may be an
indication that a higher dimensional projection is necessary. In summary, validated
continuation provides an internal check of consistency on the dimension of truncation
from the infinite to finite dimensional problem a feature which is not present in the
traditional application of continuation methods.

With this in mind we have chosen to compare the computational costs as follows.
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First we restrict our attention to cubic nonlinearities. As is made clear by the formu-
lae of Section 3 in this case the cost of evaluating the nonlinearities and performing
Newton’s method are both of order m3. Thus, we can obtain a rough bound on the
ratio of the cost of traditional versus validated continuation by counting the number
of m3 operations which need to be performed. These calculations suggest that for
fixed m the cost of validated continuation is less than twice the cost of traditional
continuation, that is it appears that it is cheaper to perform validated continuation,
than to perform traditional continuation and then check it against continuation per-
formed on a higher dimensional projection. In Section 5 this estimate is tested against
actual computations for the Swift-Hohenberg equation and the Cahn-Hilliard equa-
tion. To ensure that these comparisons are fair, we employ standard floating point
computations in both cases.

This last point raises an important distinction: validated continuation versus
rigorous continuation. Using floating point calculations at all steps of the validated
continuation, does not allow one to control for roundoff errors and hence one cannot
rigorously concluded the existence of an equilibrium. Because the current computer
technology treats floating point and interval arithmetic differently we chose not to
make and present timed comparisons between the two for this paper. However, if
specific steps in the validation argument are performed using interval arithmetic,
then one obtains rigorous results on the existence of equilibria. Results of this type
are presented in Section 5 for a branch of equilibria of the Swift-Hohenberg equation.

We see the results of this paper as a first step in the direction of combining
continuation methods with rigorous computations. With this in mind we conclude
the paper in Section 7 with a discussion of open questions and on going work. In
particular, we return to the issue of the necessity of interval arithmetic computations.

2. Computational proofs for equilibria. Assume that following the expan-
sion of a PDE into an appropriate orthogonal basis, we have a system of the form
(1.3). Our goal is to prove that there is a unique equilibrium for (1.3) which lies in
a small set containing a computed numerical equilibrium. Suppose ūF is a numerical
equilibrium computed using an m-dimensional continuation procedure (as described in
Section 3) and ū := (ūF , 0, . . . ) is the corresponding point in the infinite dimensional
space. We will consider a set of the form ū + W where W = Πkw̃k,

(2.1) w̃k =
{

[−r, r] 0 ≤ k < m[
−As

ks , As

ks

]
k ≥ m

for some constants r, As > 0 and s ≥ 2.
A particularly nice norm to use for this set (similar to the one used by Yamamoto

in [9]) is the normalized sup norm

‖u‖W := sup
k

{
|uk|
|w̃k|

}
where |w̃k| := max {|x| | x ∈ w̃k}. In this norm, W = B(0, 1) is the unit ball around 0,
and ū + W = B(ū, 1) is the unit ball around ū.

We will now reformulate our problem of studying equilibria for (1.3) by establish-
ing an equivalent fixed point problem on ū + W . Suppose J is an invertible operator.
Then u is an equilibrium solution of (1.3) if and only if u is a fixed point of

(2.2) T (u) = u− Jf(u)
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where f is given by (1.3). In practice, T is constructed to be a contraction (Newton-
like) operator with J ≈ (Df(ū))−1 so that we may use Banach’s fixed point theorem.
We now frame this fixed point theorem in a more computational setting.

In the process of showing that T is a contraction, we first consider the following
Lipschitz condition on ū + W :

(2.3) ‖T (x)− T (y)‖W ≤ K‖x− y‖W for x, y ∈ ū + W.

The question now becomes whether we can compute a contraction constant K < 1
satisfying (2.3). We begin by computing Lipschitz constants, Kn, for the component
functions Tn on ū + W satisfying the following

(2.4) |Tn(x)− Tn(y)| ≤ Kn‖x− y‖W for x, y ∈ ū + W.

If T is C1, we may take Kn to be a bound on the derivative of Tn over ū + W . More
explicitly,

Kn ≥ sup |DTn(ū + W ) ·W |
:= sup

b,c∈W
|DTn(ū + b) · c| .

A constant Kn computed in this manner satisfies (2.4) by the following argument.
For x, y ∈ ū + W , let gn(s) := Tn[sx + (1 − s)y]. Applying the mean value theorem
to gn, we get the existence of sn ∈ [0, 1] such that gn(1) − gn(0) = g′(sn). Since the
set ū + W is convex, we get the existence of zn := snx + (1− sn)y ∈ ū + W such that

|Tn(x)− Tn(y)| = |DTn(zn)(x− y)|

=
∣∣∣∣DTn(zn)

x− y

‖x− y‖W

∣∣∣∣ ‖x− y‖W .

By construction of ‖ · ‖W , x−y
‖x−y‖W

∈ W . Now if K := supn
Kn

|w̃n| < ∞, then, as the
following argument shows, it satisfies (2.3)

‖T (x)− T (y)‖W = sup
n

|Tn(x)− Tn(y)|
|w̃n|

= sup
n

∣∣∣DTn(zn) x−y
‖x−y‖W

∣∣∣ ‖x− y‖W

|w̃n|

≤ sup
n

Kn

|w̃n|
‖x− y‖W

= K‖x− y‖W .

Theorem 2.1 (existence and uniqueness). If for all n there exist bounds Yn ≥
|Tn(ū)− ūn| and Kn satisfying (2.4) such that

(2.5) Yn + Kn − |w̃n| < 0

and

(2.6) K := sup
n

Kn

|w̃n|
< 1

then there exists a unique fixed point of T in ū + W .
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Proof. The first inequality ensures that T (ū + W ) ⊂ ū + W . This is true if and
only if for every u ∈ ū + W , ‖T (u)− ū‖W ≤ 1, or equivalently, |Tn(u)−ūn|

|w̃n| < 1 for all
n.

Let u ∈ ū + W . Then ‖u− ū‖W ≤ 1 and for each n,

|Tn(u)− ūn| = |Tn(u)− Tn(ū) + Tn(ū)− ūn|
≤ |Tn(u)− Tn(ū)|+ |Tn(ū)− ūn|
≤ Kn‖u− ū‖W + Yn

≤ Yn + Kn

< |w̃n|

by assumption (2.5). Therefore, T (ū+W ) ⊂ ū+W . The second inequality guarantees
that T is also a contraction. Thus, the result follows from Banach’s fixed point
theorem.

Let us make the comment here that sufficient regularity of the equilibrium solu-
tions will effectively reduce the infinite set of conditions listed in Theorem 2.1 to a
finite list. In essence, the strong decay in the higher modes may be used to verify
(2.5) simultaneously for all n > N for some N . (In our case N is determined by
the dimension used for continuation and the degree of the nonlinearity.) Further-
more, regularity of the equilibria may also be used to show that Kn|w̃n|−1 becomes a
decreasing sequence. Therefore, (2.6) follows automatically from (2.5).

Perhaps an even more important point to make for our intended algorithmic
approach in this paper is that Yn + Kn − |w̃n| will be given as a polynomial in the
validation radius r, the width of the set W in the low modes. Therefore, validating
the existence of a unique equilibrium near ū will amount to showing that it is possible
to simultaneously solve a (finite) list of polynomial inequalities in r.

3. Validated continuation. The ideas outlined in Section 2 for proving the
existence of unique equilibria fit naturally with traditional continuation techniques
for following branches of numerical equilibria. In particular, an approximation of a
projection of the Newton operator given in (2.2) onto the appropriate m-dimensional
subspace is an intrinsic element of the continuation algorithm. In this Section, we dis-
cuss exploiting this relationship to automatically produce a validation of the existence
of unique equilibria at each step of the continuation procedure.

Recall that following the expansion of the system in the appropriate basis, we
have

(3.1) u̇ = f(u, ν)

where for k = 0, 1, 2, . . . , µk = µk(ν), (cp)n = (cp(ν))n and

(3.2) u̇k = fk(u) = µkuk +
d∑

p=0

∑
P

ni=k

(cp)n0un1 · · ·unp

A first step for implementing a continuation algorithm for studying a PDE is
to perform a Galerkin projection. Let m be a fixed projection dimension and con-
sider the following truncated version of our original expansion of the PDE given in
(3.2). For uF := (u0, . . . , um−1) ∈ Rm, define f (m) : Rm → Rm by f (m)(uF ) =
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(f (m)
0 (uF ), . . . , f (m)

m−1(uF )) where for k = 0, . . . ,m− 1,

f
(m)
k (uF ) = µkuk +

d∑
p=0

∑
P

ni=k

|ni|<m

(cp)n0un1 · · ·unp

The corresponding Galerkin projection of the original system (3.1) is then

(3.3) u̇F = f (m)(uF , ν)

This is the m-dimensional system to be studied numerically. Intuitively, we expect
that if m is sufficiently large, (3.3) will capture the essential dynamics for the original
system (3.1). In particular, given an equilibrium ūF for (3.3) we expect that there is
a small set around ū := (ūF , 0, . . . ) which contains a unique equilibrium solution for
(3.1). Our approach is to study this relationship via the tools outlined in Section 2.

3.1. Continuation for ODEs and Newton-like operator. A traditional con-
tinuation procedure involves iteration of predictor and corrector steps to trace out
branches of equilibria. Under the assumption that at some parameter ν = ν0 we have
an equilibrium solution for (3.3), we want to continue the equilibrium as we vary ν.
1) Euler predictor: Given an approximate equilibrium x0 at ν0, the predictor at
ν1 = ν0 + ∆ν is x

(0)
1 = x0 + ẋ0∆ν, where

(3.4) ẋ0 = −f (m)
x (x0, ν0)

−1
f (m)

ν (x0, ν0).

2) Quasi-Newton corrector: We now use the following quasi-Newton iterative
scheme to improve our approximation at ν1

(3.5) x
(n+1)
1 = x

(n)
1 − f (m)

x (x1
(0), ν1)

−1
f (m)(x(n)

1 , ν1)

If k is the total number of iterations of (3.5), then ūF := x
(k)
1 and f (m)(ūF , ν1) ≈ 0.

As before, define the corresponding point ū = (ūF , 0, . . . ) in the infinite dimen-
sional space. We now use the information required for the next predictor step, the
numerical inverse of f

(m)
x (ūF , ν1), to construct a Newton-like operator near ū at the

parameter value ν1. Let JF×F be the numerical inverse of f
(m)
x (ūF , ν1) and define the

Newton-like operator T by

(3.6) T (u) = u− Jf(u)

where

J :=


JF×F 0

0

µ−1
m

µ−1
m+1

. . .


is the block diagonal matrix which we expect to be close to (Df(ū, ν1))−1. Note that
T , J , and f all depend on the parameter ν. As in Section 2, we will attempt to show
that T is a contraction on a set of the form ū + W where W has the form (2.1). We
now emphasize the dependence of this set W = W (r) on the validation radius r since
this approach relies on finding an appropriate r > 0 to satisfy a set of conditions. The
constants As and s may be determined by regularity arguments or otherwise set prior
to the computations. As seen in the definition of W (r), these constants determine
the size of the region in which we are attempting to show the unique existence of an
equilibrium solution.
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3.2. Radii polynomials. We now present the formulae for radii polynomials.
In order to focus on the applicability of validated continuation the justification that
these polynomials do, in fact, encode the required bounds Yn and Kn in (2.5) for the
Newton-like operator constructed in (3.6) is delayed to Section 6.

Since the formulae for the polynomials are rather ungainly, let us begin by ex-
plicitly stating the information that is used to construct the coefficients.

• d is the degree of the nonlinearity of (1.2).
• m is the number of modes used in the Galerkin projection.
• M ≥ m is a computational parameter that allows for the use of explicit

values for coefficients of M − m additional modes to decrease truncation
error bounds.

• m+ ≥ m is a computational parameter that allows for the use of additional
structure in the model to get tighter truncation error bounds.

• ūF ∈ Rm is the numerical zero produced by the predictor-corrector step.
• JF×F is the numerical inverse obtained from the predictor-corrector step.
• (cp)n, |n| < m are the coefficients from the expansion (1.3).
• µk, k ≥ 0 are the eigenvalues for the linear operator L as expressed in (1.3)

and

µ̄ := lim inf
n≥m+

|µn|.

Note that if |µn| is monotonically increasing for n ≥ m+, then µ̄ = |µm+ |.
• s and As are positive constants that are related to the regularity of the

equilibria.
Observe that given this information we can evaluate the vector

fF (ū) :=

 f0(ū)
...

fm−1(ū)


where

fn(ū) = µnūn +
d∑

p=0

∑
n0+···+np=n

|n1|,...,|np|<m

(cp)n0 ūn1 · · · ūnp .

We can also set

(3.7) Yk ≥

{
|JF×F fF (ū)|k if 0 ≤ k < m
|
Pd

p=2(cpūp)k|
|µk| if k ≥ m

where

(cpū
p)k =

∑
P

ni=k

(cp)n0 ūn1 · · · ūnp .

The following constants are all related to asymptotic bounds on the expansions
of the numerical equilibrium ū, and the set ū + W . As such they are related to the
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regularity of the equilibrium and the coefficients of (1.2). Define

α :=
2

s− 1
+ 2 + 3.5 · 2s

Cp := max
k
{|(cp)0|, |(cp)k||k|s}

Ā := max
1≤k<m

{|ū0|, |ūk||k|s}

A = A(r) := max{As, r(m− 1)s}

C(Ā, A) :=
d∑

l=1

d∑
p=max{2,l}

l

(
p

l

)
αpCpĀ

p−lA(r)l

C+(Ā, A) :=

{ ∑d
l=1

∑d
p=2 l

(
p
l

)
αpCpĀ

p−lAl if Yk, Rk = 0 for all k ≥ m+∑d
p=0 αpCpĀ

p +
∑d

l=1

∑d
p=max{2,l} l

(
p
l

)
αpCpĀ

p−lAl otherwise ,

V
(0)
F := |JF×F |RF , V

(1)
F :=

∣∣∣IF×F − JF×F ·Df (m)(ūF )
∣∣∣


1
1
...
1


where | · | denotes entry-wise absolute value and for k ∈ {0, · · · ,m− 1},

Rk :=
∞∑

n̄=−∞
|k−n̄|≥m

∣∣∣∣∣∣
d∑

p=1

p
∑

P
ni=n̄

(cp)n0 ūn1 . . . ūnp−1

∣∣∣∣∣∣ As

|k − n̄|s
.

Note that if all cp have finite expansions, then V
(0)
F requires only a finite computation.

Observe also that the above implies that ūk ∈ Ā
ks [−1, 1] and w̃k ⊂ A

ks [−1, 1] for all k.
The validation procedure also requires bounds on the errors due to truncating

modes k ≥ m. These bounds come in the following form:

(3.8) εn :=
d∑

l=1

d∑
p=l

l

(
p

l

)
εn(p, l,M)

where

εn(p, l,M) :=(3.9)

min
{

pαp−1CpĀ
p−lAl

(M − 1)s−1(s− 1)

[
1

(M − n)s
+

1
(M + n)s

]
,
αpCpĀ

p−lAl

ns

}
,

and

Cn(p, j, l,M) :=(3.10)

∑
|n̄|<(p−l)(m−1)+M

∣∣∣ ∑
P

ni=n̄

|n0|<M

|n1|,...,|np−l|<m

(cp)n0 ūn1 · · · ūnp−l

∣∣∣
 ∑

P
ni+n̄=n

m≤|n1|,...,|nj |<M

Aj
s

|n1|s · · · |nj |s

 .
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For notational purposes, we also define m-vectors containing these bounds for modes
n = 0, . . . ,m− 1 as follows.

εF :=

 ε0
...

εm−1

 , and CF (p, j, l,M) :=

 C0(p, j, l,M)
...

Cm−1(p, j, l,M)

 .

Note that these bounds are computable in that they require only a finite number
of computations. In addition, increasing the computational parameter M has the
effect of increasing the computational work in order to decrease the bounds.

We now use bounds (3.9) and (3.10) to define radii polynomials, Pn(r). These
polynomials are designed to encode the bounds required by Theorem 2.1. More
specifically, as is demonstrated in Section 6, the polynomials are constructed so that
Pn(r) < 0 implies that Yn + Kn − |w̃n| < 0 on the set

(3.11) ū + W (r) = ū +

(
m−1∏
k=0

[−r, r]×
∞∏

k=m

[
−As

ks
,
As

ks

])
.

Definition 3.1. To simplify notation, the finite radii polynomials, P0, . . . , Pm−1,
are given as an m-vector PF (r) = (P0(r), . . . , Pm−1(r))t. Define

(3.12) PF (r) :=
d∑

n=0

CF (n)rn

where the coefficients are

CF (n) :=

 CY
F + CK

F (0) n = 0
CK

F (1)− 1 n = 1
CK

F (n) n = 2, . . . , d.

The right hand terms are defined as follows. The individual terms of the vectors CK
F (i)

are chosen to satisfy

CK
k (i) ≥

 d∑
l=max{2,i}

d∑
p=l

l

(
p

l

)(
l

i

)
|JF×F |CF (p, l − i, l,M)

+


|JF×F |εF + V

(0)
F i = 0

V
(1)
F i = 1

0 otherwise


k

.(3.13)

and similarly

(3.14) CY
F = YF .

where | · | and the bounds are computed component-wise.
Observe, again, that determining these bounds require only a finite number of

computations.
Definition 3.2. For k ≥ m, the tail radii polynomial is

Pk(r) =


|
Pd

p=0(cpūp)k|
|µk| + C(Ā,A(r))

|µk|ks − As

ks m ≤ k < m+

C+(Ā,A)
|µk|ks − As

ks k ≥ m+
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where, again,

(cpū
p)k =

∑
P

ni=k

(cp)n0 ūn1 · · · ūnp .

Definition 3.3. Consider the radii polynomials consisting of the finite radii
polynomials Pk, k = 0, . . . ,m − 1, and the tail radii polynomials, Pk, k ≥ m. A
positive real number r is a validation radius if Pk(r) < 0 for all k ≥ 0.

The proof of the following theorem is presented in Section 6
Theorem 3.4. If there exists a validation radius r > 0 and the eigenvalues µk

satisfy |µk| → ∞, then there exists a unique equilibrium solution of (3.1) in ū+W (r).
We now present a procedure for computing a validation radius that satisfies the

hypotheses of Theorem 3.4. In particular, this procedure describes a natural order for
defining the decay constants As, s, and A. The constants As and s reflect regularity
properties of the equation and should be chosen either from numerical simulations or
analysis. In this approach, we choose to treat A = A(r) as a constant. The rationale
for this choice is that from a computational perspective, we would like to find r > 0
solving simple constructions of the finite radii inequalities P0(r) < 0, · · · , Pm−1(r) < 0
without having to simultaneously control the more complicated effects from A on the
coefficients of these polynomials as well as on the tail polynomials Pk, k ≥ m. A
practical way to achieve this goal is to set A = As at the beginning of the procedure
and then check in the end that a solution r > 0 to P0(r) < 0, · · · , Pm−1(r) < 0 also
satisfies r(m− 1)s ≤ As.

Here, for the sake of simplicity, we set M = m. If the truncation error bounds
prove too large for the computations, then M should be increased as described in
Remark 6.3 in Section 6. Finally, we add a condition which reduces the check of the
tail polynomials Pk(r) < 0, k > m to a finite number of computations. The following
procedure outlines this approach.

Procedure 3.5. Suppose that the eigenvalues µk are such that |µk| → ∞.
Suppose further that we may choose m,m+, m̄ ∈ N, m̄ ≥ m+ ≥ m, and µ̄ > 0 such
that

1. m is the Galerkin projection dimension used for numerical continuation,
2. m+ is the parameter used in the computation of C+(Ā, A), and
3. m̄ measures where the tail terms are bounded from below by µ̄ as follows: for

all k ≥ m̄, |µk| ≥ |µ̄|.
Set M = m.

Remark: m should be chosen to give the expected nonzero modes along the
bifurcation branch under study and m̄ = m+ = (2d + 1)(m − 1) + 1 if (cp)n = 0 for
all n 6= 0 and the eigenvalues, µk are monotonically increasing in magnitude after
k = (2d + 1)(m− 1).

Fix the decay constants

(3.15) s ≥ 2 and As > 0.

Remark: In practice, As and s should be determined by regularity properties of the
equation.

Set A := As. Using the finite radii polynomials given in Definition 3.1, for
k = 0, · · · ,m− 1, numerically compute Ik := {r > 0 | Pk(r) < 0} and

(3.16) I :=
m−1⋂
k=0

Ik .
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Check that I 6= ∅.
Remark: If I = ∅, begin the procedure again either by choosing m larger or by

choosing s larger and/or As smaller in (3.15).
Check that there exists r̄ ∈ I such that

(3.17) r̄ ≤ As

(m− 1)s
.

Remark: If such an r̄ exists, then A = As = max{As, r̄(m−1)s}. This in turn implies
that component-wise PF (r̄) < 0. If r̄ does not exist, then begin the procedure again
either by choosing m larger or by choosing s larger and/or As smaller in (3.15).

Check the inequalities

Pm(r̄) < 0, · · · , Pm̄−1(r̄) < 0 and
C(Ā, A)
|µ̄|

−As < 0.

Remark: If any of these inequalities fails, begin the procedure again either by choosing
m larger or by choosing s larger and/or As smaller in (3.15).

Observe that if Procedure 3.5 is successful, the hypotheses of Theorem 3.4 are
satisfied with validation radius r̄.

4. Computational cost. We now provide a rough comparison of the cost of
continuation with the cost of validated continuation for PDEs of the form

(4.1) ut = L(u, ν)− u3 .

Since the degree of the polynomial nonlinearity in (4.1) is cubic and we use a Newton-
like operator in the continuation procedure, the most expensive terms of the compu-
tation involve m3 operations, where m is the number of modes used in the Galerkin
projection

(4.2) f
(m)
k (uF , ν) = µk(ν)uk −

∑
n1+n2+n3=k

|ni|<m

un1un2un3 , k = 0, . . . ,m− 1.

With this in mind we count the number of m3 operations for both approaches to
obtain an estimate for the asymptotic costs and conclude with statistics obtained
from calculations for the Swift-Hohenberg and Cahn-Hilliard equations.

4.1. Cost of continuation. We decompose the analysis of the cost of continu-
ation into four steps, assuming that we begin with an approximate zero x0 at ν0.

Step 1. In order to get the Euler predictor (3.4), we need to evaluate the

vector −f
(m)
x (x0, ν0)

−1
f

(m)
ν (x0, ν0). This requires computing the m by m matrix

f
(m)
x (x(0)

0 , ν0), where for 0 ≤ i, j < m,[
f (m)

x (x(0)
0 , ν0)

]
i+1,j+1

= δi,jµi − 3
( ∑

n1+n2+j=i

|ni|<m

[x(0)
0 ]|n1|[x

(0)
0 ]|n2|

+
∑

n1+n2−j=i

|ni|<m

[x(0)
0 ]|n1|[x

(0)
0 ]|n2|

)
.

This involves the evaluation of 2m2 sums demanding 2m − 1 multiplications and
2m−2 additions each. Therefore, determining f

(m)
x (x(0)

0 , ν0) requires 8m3 operations.
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Next, we compute the LU decomposition of f
(m)
x (x(0)

0 , ν0) in order to compute the
action of its inverse on f

(m)
ν (x0, ν0). This involves 2

3m3 operations. In our case,
f

(m)
ν (x0, ν0) = x0, requiring no additional cost. The predictor is then{

x
(0)
1 = x0 −∆νf

(m)
x (x0, ν0)

−1
x0

ν1 = ν0 + ∆ν.

Step 2. We now start the corrector. To construct the quasi-Newton operator
(3.5), we need the action of the inverse of f

(m)
x at the predictor (x(0)

1 , ν1). As seen
before, it costs 8m3 to evaluate f

(m)
x (x(0)

1 , ν1) and 2
3m3 to compute its inverse using

LU decomposition. Note that we need to compute the LU decomposition only at the
first step.

Step 3. At the jth iteration of (3.5), we need to evaluate f (m)(x(j−1)
1 , ν1). Its ith

component is

[f (m)(x(j−1)
1 , ν1)]i = µi(ν1)[x

(j−1)
1 ]i

−
∑

n1+n2+n3=i

|ni|<m

[x(j−1)
1 ]|n1|[x

(j−1)
1 ]|n2|[x

(j−1)
1 ]|n3|

which requires at least 3m2 operations to evaluate. Since f (m) has m components,
we get a total of 3m3. If k is the total number of iterations of the corrector, then this
step requires 3km3 operations.

Step 4. The corrector ends when ||f (m)(x(k)
1 , ν1)|| < tolerance. Let āF :=

x
(k)
1 . Evaluating the function at (ūF , ν1) is another 3m3. Now, note that we have to

compute the action of the inverse of f
(m)
x (ūF , ν1) to get the predictor for the next step.

Recall JF×F is the numerical inverse of f
(m)
x (ūF , ν1) computed as before using an LU

decomposition. Explicitly computing all the coefficients in f
(m)
x (ūF , ν1) requires an

extra 2m3 operations. We do not count the m3 involved to get the next predictor,
since that is part of the next predictor-corrector step.

Combining the costs of the four above mentioned steps suggests that the cost of
one application of the predictor-corrector algorithm is on the order of (20 + 3k)m3,
where k is the number of iterations in the quasi-Newton corrector.

4.2. Cost of validation. We now show that the extra cost of performing vali-
dation for a cubic function (d = 3) with constant function coefficients is of the order
of 6m3 operations where m is the projection dimension used for continuation. The
additional cost comes primarily from computing the coefficients of the radii polyno-
mials. In the following, we construct m+ = d(m − 1) + 1 = 3m − 2 polynomials
P0, . . . , P3m−3 using Procedure 3.5 and calculate the associated computational cost.
Both to simplify the presentation and because this is what is used to perform the com-
putations presented in Section 5, we set m̄ = m+ = d(m − 1) + 1, with |µk| ≥ |µm̄|
for all k ≥ m̄, and M = m. As described in Procedure 3.5, A = As and we consider
fixed s > 2 and As > 0.

The only nonlinear term of (4.1) is a monomial of degree 3. Thus, if p 6= 3,
then Ck(p, j, l,M) = 0. In addition, we have set M = m. Hence, if j 6= 0, then
Ck(p, j, l,M) = 0 (see Remark 6.3). Therefore, the only nonzero terms of this form
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are

(4.3) Ck(3, 0, l,m) =

∣∣∣∣∣∣∣∣
∑

n1+n2+n3=k

|n1|,|n2|,|n3|<m

ūn1 · · · ūn3−l

∣∣∣∣∣∣∣∣ .
Hence, by (3.13) we set

(4.4) CK
k (0) ≥ (|JF×F |εF )k + V

(0)
k

for 0 ≤ k < m and | · | denotes the component-wise absolute value. Note that it
is possible to get an analytic upper bound on V

(0)
k using Lemma 6.2 in which case

computing V
(0)
k doesn’t require any m3 operations. Hence, all necessary computations

for CK
F (0) are of order less than m3. Using (3.13),

CK
k (1) ≥ V

(1)
k

for 0 ≤ k < m and evaluating V
(1)
F does not require any m3 operations.

Finally, combining (3.13) and (4.3)

CK
F (2) ≥ 6|JF×F |CF (3, 0, 2,m)

where Cn(3, 0, 2,m) = |ūn| and

CK
F (3) ≥ 3|JF×F |CF (3, 0, 3,m)

where Cn(3, 0, 3,m) = 1.
The last coefficient to compute to get all the finite radii polynomials (3.14) is

CY
F ≥ |JF×F fF (ū)|

where again | · | denotes the component-wise absolute value. This comes with no extra
m3 cost since fF (ū) = f (m)(ūF , ν1) was computed in Step 4 of the predictor-corrector
algorithm.

The next step in Procedure 3.5 is checking for the existence of a validation radius
r > 0. This requires finding the numerical zeros of each of the cubic polynomials
P0, · · · , Pm−1, constructing I0, · · · , Im−1 where Ik are closed intervals such that Ik (
{r > 0|Pk(r) < 0}, and finally checking for a non-empty intersection I = ∩m−1

k=0 Ik.
All of these steps are of order less than m3.

Assuming there exists a positive r̄ ∈ I such that r̄(m−1)s ≤ As, we construct and
evaluate the tail radii polynomials Pm, · · · , P3m−1 at r̄. We compute Yk using (3.7)
which requires 6m3 operations since we need to evaluate fk(ū) for k = m, · · · , 3m−3.

Using Definition 3.2 and the assumption that A = As we compute

C(Ā, A) =
3∑

l=1

l

(
3
l

)
α3Ā3−lAl = 3α3As(Ā + As)2.

This latter step and the remaining computations for Procedure 3.5 are all of order
less than m3.

In summary, the m3 cost of computing the coefficients of the radii polynomials is
6m3. Thus the additional cost of validation is on the order of 6m3 operations.
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4.3. Relative cost. Combining the results of Sections 4.1 and 4.2 suggests that
asymptotically the ratio of the cost of validated continuation to the cost of traditional
continuation is

26 + 3k

20 + 3k
.

where k is the number of iterations performed in the corrector step. We tested this
hypothesis again two fourth order partial differential equations with cubic nonlineari-
ties, Swift-Hohenberg and Cahn-Hilliard. The results are discussed in greater detail in
Section 5. For the moment we are only interested in the relative times of computation.

We performed validated continuation for 46 predictor-corrector steps involving
a total of 90 quasi-Newton iterations for the cubic Swift-Hohenberg equation. We
repeated the computations without validation. The ratio of elapsed time for validated
continuation to the time used for continuation alone was ≈ 1.156. Given that we had
an average of 90/46 iterations per predictor-corrector step, this is close to the rough
estimate of 26+3·90/46

20+3·90/46 ≈ 1.232 given by the above arguments.
Similarly, we performed validated continuation for 15 predictor-corrector steps

involving a total of 37 quasi-Newton iterations for Cahn-Hilliard. Again, we repeated
the computations without validation. The ratio of elapsed time for validated con-
tinuation to the time used for continuation alone was ≈ 1.173. Given that we had
an average of 37/15 iterations per predictor-corrector step, the asymptotic ratio is
26+3·37/15
20+3·37/15 ≈ 1.219.

The results of these computations are summarize in Figure 4.1.

PDE m # iterations
# steps

Experimental Ratio Estimated Ratio 26+3k
20+2k

S-H 27 1.96 1.156 1.232
C-H 60 1.65 1.173 1.219

Fig. 4.1. Comparison of the asymptotic ratios.

5. Sample results. To demonstrate the practical applicability of validated con-
tinuation we turn to two model problems, Cahn-Hilliard and Swift-Hohenberg. In
both cases we follow a branch of equilibria and validate at each parameter value of
the continuation. In the case of Swift-Hohenberg we also use interval arithmetic to
evaluate the radii polynomials, thus allowing us to rigorously verify the existence and
uniqueness of the equilibria.

5.1. Cahn-Hilliard. The Cahn-Hilliard equation was introduced in [1] as a
model for the process of phase separation of a binary alloy at a fixed temperature.
On a one-dimensional domain it takes the form

ut = −(
1
ν

uxx + u− u3)xx , x ∈ [0, 1]

ux = uxxx = 0 , at x = 0, 1.(5.1)

The assumption of an equal concentration of both alloys is formulated as∫ 1

0

u(x, ·) dx = 0
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Note that when looking for the equilibrium solutions of (5.1), it is sufficient to work
with the Allen-Cahn equation

1
ν

uxx + u− u3 = 0(5.2)

ux = 0 at x = 0, 1.

Re-writing (5.2) in the form of (1.2), the linear operator is L(·, ν) = 1
ν

∂2

∂x2 +1 and
the polynomial nonlinearity is of degree d = 3 with coefficient functions

(cp)n =
{
−1 p = 3 and n = 0
0 otherwise.

Applying Procedure 3.5 with M = m = 60, s = 3, and As = 0.01, results in the
branch of equilibria indicated in Figure 5.1 where each point represents the center
of the infinite dimensional validation set of the form ū + W (r̄), containing a unique
equilibrium of (5.1). These are the points used to obtain the cost estimates presented
in Figure 4.1. To avoid drowning the reader in large lists of numbers, we only provide
the detailed numerical output at one parameter value.

Validated Result 5.1. Let ν = 43.57415358799057. Then,

r̄ = 4.846104201261526× 10−8

is a validation radius for the numerical zero ūF given in Figure 5.2. Thus, there exists
a unique equilibrium for (5.1) in the validation set

(ūF , 0) +
59∏

k=0

[−r̄, r̄]×
∞∏

k=60

[
−0.01

k3
,
0.01
k3

]
.

Fig. 5.1. Validated continuation in ν for the Cahn-Hilliard equation on [0, 1].

5.2. Swift-Hohenberg. The Swift-Hohenberg equation

ut = f(u, ν) =

{
ν −

(
1 +

∂2

∂x2

)2
}

u− u3, u(·, t) ∈ L2

(
0,

2π

L0

)
,

u(x, t) = u

(
x +

2π

L0
, t

)
, u(−x, t) = u(x, t), ν > 0,(5.3)
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k ūk

1 1.773844149032812× 10−1

3 −7.601617928785714× 10−4

5 3.271672072176762× 10−6

7 −1.408100160017936× 10−8

9 6.060344382471457× 10−11

11 −2.608320515803233× 10−13

13 1.122598345048980× 10−15

15 −4.831561184682242× 10−18

17 2.079457485469691× 10−20

19 −8.949770271275235× 10−23

21 3.851880360024139× 10−25

23 −1.657801422354123× 10−27

25 7.134947464114615× 10−30

27 −3.070770234245256× 10−32

29 1.321605495419571× 10−34

31 −5.687926883858248× 10−37

33 2.447955395983479× 10−39

35 −1.053537452697732× 10−41

37 4.534120813401209× 10−44

39 −1.951337823193323× 10−46

41 8.397842606319005× 10−49

43 −3.614086242431264× 10−51

45 1.555336697148314× 10−53

47 −6.693373497802139× 10−56

49 2.880447985844179× 10−58

51 −1.239563989182517× 10−60

53 5.334225825486573× 10−63

55 −2.295445428599939× 10−65

57 9.877687199770852× 10−68

59 −4.250458946966345× 10−70

≥60 0

Fig. 5.2. The numerical zero ūF obtained by continuation for the Cahn-Hilliard equation at
ν = 43.57415358799057. Note that all even coefficients are 0.

was originally introduced to describe the onset of Rayleigh-Bénard heat convection [8],
where L0 is a fundamental wave number for the system size 2π/L0. The parameter
ν corresponds to the Rayleigh number and its increase is associated with the appear-
ance of multiple solutions that exhibit complicated patterns. For the computations
presented here we fixed L0 = 0.65.

Re-writing (5.3) in the form of (1.2), the linear operator is L(·, ν) = ν−(1+ ∂2

∂x2 )2

and the polynomial nonlinearity is of degree d = 3 with coefficient functions

(cp)n =
{
−1 p = 3 and n = 0
0 otherwise.

Applying Procedure 3.5 with M = m = 27, s = 4, and As = 0.002, results in
the branch of equilibria indicated in Figure 5.3 where each point represents the center
of the infinite dimensional validation set of the form ū + W (r̄), containing a unique
equilibrium of (5.3). Again, these are the points used to obtain the cost estimates
presented in Figure 4.1.

As in the case of the Cahn-Hilliard equation, we only include the output at one
point on the branch of the Figure 5.3.

Validated Result 5.2. Let ν = .6674701641462312. Then

r̄ = 1.998167170445973 × 10−9
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Fig. 5.3. Validated continuation in ν for the Swift-Hohenberg equation at L0 = 0.65.

k ūk

1 −3.359998711939212× 10−1

3 4.824376413178060× 10−3

5 −1.761066797314072× 10−5

7 7.535865329757206× 10−8

9 −2.790895103063484× 10−10

11 9.411109491227775× 10−13

13 −3.113936321690645× 10−15

15 1.007016979585499× 10−17

17 −3.200410295859874× 10−20

19 1.003878817132397× 10−22

21 −3.114244522738206× 10−25

23 9.573156964813860× 10−28

25 −2.920394630491221× 10−30

≥26 0

Fig. 5.4. The numerical zero ūF obtained by continuation for the Swift-Hohenberg equation at
ν = .6674701641462312 and L0 = 0.65. All even coefficients are 0.

is a validation radius for the numerical zero ūF whose coefficient values are indi-
cated in Figure 5.4. Thus, there exists a unique equilibrium solution for (5.3) in the
validation set

(ūF , 0) +
26∏

k=0

[−r̄, r̄]×
∞∏

k=27

[
−0.002

k4
,
0.002
k4

]
.

Observe that in all the above mentioned calculations floating point round-off
errors have not been controlled, thus at this point one cannot claim that the validation
results presented above are rigorous. However, with additional computational effort
a computer-assisted proof can be obtain. To be more precise, our technique relies on
the existence of a validation radius r̄ making all radii polynomials strictly negative.
Hence, rigorous validation follows if the inequalities are satisfied when one includes
bounds to control the possible of floating point errors. The first step in checking these
inequalities on this level is to obtain floating point outer bounds for the coefficients
of the polynomials. This can be done by defining each entry of

ūF , f (m)(ūF , ν), JF×F , f (m)
x (ūF , ν), µk(ν), As, and s
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to be an interval and then computing (3.13), (3.14) and the quantities in Definition 3.2
using interval arithmetic. The resulting radii polynomials, which we denote by P̃k,
have interval coefficients. Let r̄ be the smallest representable number such that using
interval arithmetic, the corresponding finite radii polynomials may be shown to be
strictly contained in (−∞, 0). Assume such an r̄ exists. If, again using interval
arithmetic, r̄(m− 1)− As ⊂ (−∞, 0) and the intervals obtained from evaluating tail
radii polynomials at r̄ are strictly contained in (−∞, 0), i.e. P̃k(r̄) ⊂ (−∞, 0) for all
k ≥ m, then the hypotheses of Theorem 3.4 are satisfied and we obtain a proof.

The above mentioned computations were performed using the interval arithmetic
package in Matlab. Thus, we can state the following theorem.

Theorem 5.3. Each point in Figure 5.3 represents the center of an infinite
dimensional set of the form

ūF +
26∏

k=0

[−r̄, r̄]×
∞∏

k=27

[
−0.002

k4
,
0.002
k4

]
containing a unique equilibrium to (5.3).

The actual values for the various numerical zeros and validation radii are of limited
interest and thus not presented. Of greater interest is understanding how large are
the errors induced by the floating point computations as opposed to the magnitudes
of the floating point computations of Pk(r̄), k ≥ 0, where r̄ is the validation radius.

Let us restrict our attention to the equilibrium described by Validated Result 5.2.
Following Procedure 3.5 at this parameter value, beginning using radii polynomials
with interval coefficients and performing the computations with interval arithmetic
leads to an interval of potential validation radii

I = [3.373873850437414× 10−9, 9.003755731999980× 10−4].

Hence, we choose r̄ = 3.373873850437415 × 10−9. There are 53 inclusions that need
to be satisfied, those arising from the 2m−2 = 52 tail radii polynomials with interval
coefficients and the one associated with the inequality (3.17). The fact that the
inclusions are satisfied leads to the conclusion of Theorem 5.3 at this parameter value.
Again, rather than listing all 53 inclusions let us focus on the two extremes, the interval
closest to 0

P̃27(r̄) = −3.191484496597115× 10−11 ± 7.037497555236307× 10−24

and the interval the farthest from 0

−1.973098298147102× 10−3 ± 8.673617379884037× 10−19

corresponding to the inequality (3.17). Observe that in both cases, the width of the
interval induced by the floating point errors is more than ten orders of magnitude
smaller than the value of the center. Furthermore, this behavior is typical for all the
validation computations that were performed. This suggests that it is reasonably safe
to assume that a validated equilibrium is a true equilibrium.

6. Justification of radii polynomials. In this section, we describe the con-
struction of the radii polynomials that were defined in Section 3.2 and encode the
bounds required for Theorem 2.1. We begin by computing the required bounds Yn

and Kn in (2.5) for the Newton-like operator constructed in (3.6).
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Using a Taylor expansion of the Newton-like operator T (u) = u− Jf(u) around
the numerical equilibrium ū = (ūF , 0, 0, . . . ) leads to

DT (ū + w′)w = [I − J ·Df(ū + w′)]w

=
(

I − J

(
Df(ū) + D2f(ū)(w′) + · · ·+ Dlf(ū)

(l − 1)!
(w′)l−1 + · · ·+ Ddf(ū)

(d− 1)!
(w′)d−1

))
w

= [I − J ·Df(ū)]w − J

(
d∑

l=2

Dlf(ū)
(l − 1)!

(w′)l−1

)
w

= [I − J ·Df(ū)]w − J

 d∑
l=2

d∑
p=l

p!cpū
p−l(w′)l−1

(l − 1)!(p− l)!

w

= [I − J ·Df(ū)]w − J

 d∑
l=2

d∑
p=l

l

(
p

l

)
cpū

p−l(w′)l−1

w .

In the rest of the section, we will make use of the discrete convolution of bi-infinite
vectors i.e. considering two bi-infinite vectors (aj)j∈Z, (bj)j∈Z, we define their convo-
lution by

(a ∗ b)k =
∞∑

n=−∞
anbk−n =

∑
k1+k2=k

ki∈Z

ak1bk2 , k ∈ Z .

Expanding into Fourier modes, we can write the nonlinear part in terms of con-
volution

DT (ū + w′)w = [I − J ·Df(ū)]w − J

 d∑
l=2

d∑
p=l

l

(
p

l

)
cpū

p−l(w′)l−1

 ∗ w

= [I − J ·Df(ū)]w − J

 d∑
l=2

d∑
p=l

l

(
p

l

)
(cpū

p−l) ∗ (w′)l−1 ∗ w

 .(6.1)

Thus,

(cpū
p−l)∗((w′)l−1)∗w =

∑
n̄

 ∑
P

ni=n̄

(cp)n0 ūn1 · · · ūnp−l

 ∑
P

ni=n−n̄

w′
n1
· · ·w′

nl−1
wnl


n

.

Here, [·]n denotes the bi-infinite vector indexed by n ∈ Z and (·)k denotes the entry
at index k.

We use this expansion to compute the bounds

Kk ≥ max |(DT (ū + W )W )k|

≥ max

∣∣∣∣∣∣[I − J ·Df(ū)]w̃ − J

 d∑
l=2

d∑
p=l

l

(
p

l

)
(cpū

p−l) ∗ w̃l

∣∣∣∣∣∣
where, as in Section 2, W has the form (2.1).
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The block-diagonal structure of J allows us to decompose (6.1) into a finite, m-
dimensional piece and the infinite dimensional tail terms. For the following, we adopt
the notation [·]F to denote the m-vector whose nth entry is computed at index value
n − 1 for 1 ≤ n ≤ m, the subscript F̃ to denote the bi-infinite vector in which the
kth entries for |k| ≥ m are set equal to 0, and the subscript Ĩ to denote the bi-infinite
vector in which the kth entries for |k| < m are set equal to 0. We begin with the
following decomposition of the finite part of the linear term.

{[I − J ·Df(ū)]w}F = wF − [J ·Df(ū)w]F
= wF − JF×F [Df(ū)w]F
= wF − JF×F ·DfF (ū)w

= wF − JF×F ·
[
Df (m)(ūF )wF + RF (ū, w)

]
=
[
IF×F − JF×F ·Df (m)(ūF )

]
wF − JF×F ·RF (ū, w) ,(6.2)

where for k ∈ {0, · · · ,m− 1},

Rk(ū, w) :=
∞∑

i=m

∂fk

∂ui
(ū)wi

=
∞∑

n̄=−∞
|k−n̄|≥m

∣∣∣∣∣∣
d∑

p=1

p
∑

P
ni=n̄

(cp)n0 ūn1 . . . ūnp−1

∣∣∣∣∣∣ As

|k − n̄|s
.(6.3)

It follows that

[DT (ū + W )W ]F ⊆
[
IF×F − JF×F ·Df (m)(ūF )

]
w̃F − JF×F ·RF (ū, w)

−

JF×F

d∑
l=2

d∑
p=l

l

(
p

l

)
[(cpū

p−l) ∗ w̃l]F

 .(6.4)

For k ≥ m,

(6.5) (DT (ū + W )W )k ⊆ −J(k, k)
d∑

l=1

d∑
p=l

l

(
p

l

)
((cpū

p−l) ∗ w̃l)k.

We now focus on finding bounds on the terms given in (6.4) and (6.5). First consider

(6.6) ((cpū
p−l) ∗ w̃l)k =

∑
n̄

 ∑
P

ni=n̄

(cp)n0 ūn1 · · · ūnp−l

 ∑
P

ni+n̄=k

w̃n1 · · · w̃nl


where p is the degree of the original monomial term of f and l ∈ {1, . . . , p} is the
order of the derivative being taken. One upper bound for (6.6) is given in the following
lemma, which uses asymptotic bounds first listed in Section 3.2.

Lemma 6.1. Let α = 2
s−1 + 2 + 3.5 · 2s, ūk ∈ Ā

ks [−1, 1], (cp)k ∈ Cp

ks [−1, 1], and
w̃k ⊂ A

ks [−1, 1] for all k. Then

((cpū
p−l) ∗ w̃l)k ⊆


αpCpĀp−lAl

|k|s [−1, 1] k 6= 0

αpCpĀ
p−lAl[−1, 1] k = 0.
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Proof. Note that

∑
n̄

 ∑
P

ni=n̄

(cp)n0 ūn1 · · · ūnp−l

 ∑
P

ni+n̄=k

w̃n1 · · · w̃nl


⊆

∑
P

ni=k

(cp)n0 ūn1 · · · ūnp−l
w̃np−l+1 · · · w̃np

⊆
∑

P
ni=k

Cp

|n0|s
Ā

|n1|s
· · · Ā

|np−l|s
A

|np−l+1|s
· · · A

|np|s
[−1, 1]

The remainder of the proof is a modification of [2, Lemma 5.8].
In most cases, especially when l is small relative to p, this bound will be too large

to use for the low modes. In particular, ū may be far from zero, resulting in a large
constant Ā. By taking k sufficiently large, the contraction given by J(k, k) ≈ µk

−1

will overcome the large bound. A more practical approach for obtaining bounds for
the low modes is given by the following lemma. For flexibility in balancing numer-
ical computations (requiring a finite number of operations) with analysis (to obtain
truncation bounds), we choose M ≥ m to be the dimension used to split these sums.

Lemma 6.2. For M ≥ m,

((cpū
p−l) ∗ w̃l)k ⊆

 l∑
j=0

(
l

j

)
Ck(p, j, l,M)rl−j + εk(p, l,M)

 [−1, 1].

Proof. This lemma is a modification of [2, Lemma 5.10] combined with Lemma 6.1.
In [2, Lemma 5.10], the bound is split into finite sums and the tail term, bounded by

pαp−1CpĀ
p−lAl

(M − 1)s−1(s− 1)

[
1

(M − k)s
+

1
(M + k)s

]
[−1, 1].

We obtain a polynomial in r by rewriting the finite sums as follows:∑
n̄

( ∑
P

ni=n̄

|ni|<M

(cp)n0 ūn1 · · · ūnp−l

)( ∑
P

ni+n̄=k

|ni|<M

w̃n1 · · · w̃nl

)

=
∑

n̄

( ∑
P

ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

)( ∑
P

ni+n̄=k

|ni|<M

w̃n1 · · · w̃nl

)

=
∑

n̄


∑

P
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l




l∑

j=0

(
l

j

) ∑
P

ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

w̃n1 · · · w̃nl



=
∑

n̄


∑

P
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l




l∑

j=0

(
l

j

)
rl−j [−1, 1]

∑
P

ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

Aj
s

|n1|s · · · |nj |s
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=
l∑

j=0

(
l

j

)
rl−j

∑
|n̄|<(p−l)(m−1)+M

[−1, 1]

∣∣∣∣∣∣∣∣∣∣∣
∑

P
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

∣∣∣∣∣∣∣∣∣∣∣


∑

P
ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

Aj
s

|n1|s · · · |nj |s

 .

Remark 6.3. Note that in Lemma 6.2, Ck(p, j, l,M) captures the contribution
to the (l − j)th polynomial coefficient from the l-th derivative of the p-th monomial
term of f in the Taylor expansion. If M = m, then Ck(p, j, l,M) = 0 for all j > 0
and

Ck(p, 0, l, m) =

∣∣∣∣∣∣∣∣
∑

n0+···+np−l=k

|n0|,...,|np−l|<m

(cp)n0 ūn1 · · · ūnp−l

∣∣∣∣∣∣∣∣ .

For M > m there is also a (small) contribution to the coefficients of higher degrees
of r in the polynomials, while simultaneously decreasing the εk term. This offers a
method for using additional computations to decrease the bound εk if this bound proves
to be too large for the validation procedure.

For notational purposes, set εF , CF (p, j, l,M), V
(0)
F and V

(1)
F to be the m-vectors

as defined in Section 3.2. For 0 ≤ k < m, we substitute the bounds from Lemma 6.2
into (6.4),

(DT (ū + W )W )k ⊆ rV
(1)
k [−1, 1] + V

(0)
k [−1, 1]

+

−JF×F

d∑
l=2

d∑
p=l

l

(
p

l

) l∑
j=0

(
l

j

)
(CF (p, j, l,M)rl−j + εF (p, l,M))

 [−1, 1]


k

= (|JF×F |εF )k [−1, 1] + rV
(1)
k [−1, 1] + V

(0)
k [−1, 1]

+

 d∑
l=2

d∑
p=l

l∑
j=0

rl−j l

(
p

l

)(
l

j

)
|JF×F |CF (p, j, l,M)


k

[−1, 1]

=
(
|JF×F |εF + V

(0)
F

)
k
[−1, 1] + rV

(1)
k [−1, 1]

+

 d∑
i=0

ri
d∑

l=max{2,i}

d∑
p=l

l

(
p

l

)(
l

i

)
|JF×F |CF (p, l − i, l,M)


k

[−1, 1]

where | · | denotes entry-wise absolute value. For 0 ≤ k < m, set Kk to be

Kk :=
d∑

i=0

CK
k (i)ri ≥ |(DT (ū + W )W )k|

where CK
k (i) satisfies (3.13).

Recall that our goal is to find a polynomial bound for Yk + Kk − |w̃k| for The-
orem 2.1. This requires also computing the bounds for Yk satisfying the following
equation.

Yk ≥ |(T (ū)− ū)k|
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= |[−Jf(ū)]k|

=

∣∣∣∣∣∣∣∣
−J

µnūn +
d∑

p=0

∑
n0+···+np=n

|n1|,...,|np|<m

(cp)n0 ūn1 · · · ūnp


n


k

∣∣∣∣∣∣∣∣ .(6.7)

Therefore, for k < m, set Yk = CY
k where CY

F is given by (3.14). Note that these
terms involve the Galerkin projection of f at ū onto the first m modes and, therefore,
are expected to be small.

For 0 ≤ k < m, we now combine our bounds for Yk with the bounds for Kk

to compute the coefficients of the polynomials Pk(r) giving the bounds Yk + Kk −
|w̃k|. This leads us to the definition of the finite radii polynomials presented in
Definition 3.1.

In modes k ≥ m, we use Lemma 6.1 and (6.5) to obtain

(DT (ū + W )W )k ⊆ −J(k, k)
d∑

l=1

d∑
p=max{2,l}

l

(
p

l

)
((cpū

p−l) ∗ w̃l)k(6.8)

⊆ 1
|µk|ks

d∑
l=1

d∑
p=max{2,l}

l

(
p

l

)
αpCpĀ

p−lAl[−1, 1].

Therefore, set Kk, k ≥ m, such that

(6.9) Kk ≥
C(Ā, A)
|µk|ks

.

Recall (6.7). For k ≥ m, choose Yk (Compare with (3.7)) such that

Yk ≥ |(T (ū)− ū)k|
= |−J(k, k)(fk(ū))|

=
|
∑d

p=2(cpū
p)k|

|µk|
.(6.10)

Using Lemma 6.1,

(6.11)
|
∑d

p=2(cpū
p)k|

|µk|
⊆

d∑
p=2

αCpĀ
p

|µk||k|s
[−1, 1] .

These bounds are overestimates and should only be used for large k. In fact, if the
coefficient functions cp have finite Fourier expansions (as in the examples we consider
in Section 5) then Yk = 0 for k sufficiently large.

We may now define the polynomial bounds for Yk + Kk − |w̃k| in the tail modes.
Suppose the bounds Yk are numerically or analytically computed for m ≤ k < m+.
Then for k ≥ m, the tail radii polynomial (see Definition 3.2) satisfies

Pk(r) = Yk + Kk(r)− As

ks

=


|
Pd

p=2(cpūp)k|
|µk| + C(Ā,A)

|µk|ks − As

ks m ≤ k < m+

C+(Ā,A)
|µk|ks − As

ks k ≥ m+.
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Checking that Pk < 0 for k ≥ m reduces to checking the inequalities Pm <
0, . . . , Pm+−1 < 0 and, by rearranging terms,

(6.12) C+(Ā, A) < |µk|As.

Therefore, the assumption that |µk| is growing in k ensures that (6.12) may be verified
for all k ≥ m with only a finite number of checks. More explicitly, computing a
lower bound on |µk|, k ≥ m+ would allow us to verify all inequalities of type (6.12),
k ≥ m+, in one step. Indeed, since C+(Ā,A)

|µ̄| − As < 0 and fk(ū) = 0 and |µk| ≥ |µ̄|
for all k ≥ m̄ ≥ m+,

Pk(r̄) = Yk + Kk −
As

ks

=
C+(Ā, A)
|µk|ks

− As

ks

≤ C+(Ā, A)
|µ̄|ks

− As

ks

< 0.

We have now constructed the radii polynomials to give the bounds required for The-
orem 2.1.

Recall that r > 0 is a validation radius if Pk(r) < 0 for all radii polynomials Pk as
defined in Definitions 3.1 and 3.2. We may now prove Theorem 3.4 from Section 3.2.

Theorem 3.4. If there exists a validation radius r > 0 and the eigenvalues µk

satisfy |µk| → ∞, then there exists a unique equilibrium solution of (3.1) in ū+W (r).
Proof. The radii polynomials have been constructed so that Pk(r) < 0 for all k

ensures that the first condition of Theorem 2.1 is satisfied. Since the first condition
is satisfied, we also have that Kk

|w̃k| < 1 for all k. Finally, since |µk| → ∞,

Kk

|w̃k|
=

C+(Ā,A)
|µk|ks

As

ks

=
C+(Ā, A)
As|µk|

→ 0

Therefore, K := sup
{

Kk

|w̃k|

}
< 1 and the second and final hypothesis in Theorem 2.1

is also satisfied.

7. Concluding remarks. As is indicated in the Introduction, the purpose of
this paper is to communicate the essential ideas of our proposed validation method.
As such we have presented it in a somewhat limited setting. Thus, we conclude with a
range of comments, beginning with obvious generalizations, describing ongoing work,
and ending with some open questions.

The particular choice of the abstract expression for the expansion of the partial
differential equation (1.3) was chosen because it was appropriate for the application
to Cahn-Hilliard (5.1) and Swift-Hohenberg (5.3). Hopefully it is clear that a different
choice of boundary conditions or symmetries does not affect the essential estimates. It
is expected, but remains to be checked, that the form of the estimates can be lifted to
parabolic PDEs on rectangular domains (see [6] where similar estimates were used to
study the equilibria of the Cahn-Hilliard equation on the unit square) and to systems
of such PDEs. We also believe that generalizing this technique to pseudo-arclength
continuation should be fairly straightforward. Furthermore, treating the parameter ν
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as an interval allows us to prove the existence and uniqueness of a branch of solutions
over the interval ν̃. By adapting the predictor step length, this approach may be used
to prove existence and uniqueness along continuous, finite branches of equilibria.

While there are numerous directions in which our validation technique can be
expanded or improved we focus on the following four.

• Observe that if (1.2) has a polynomial nonlinearity of order d, then straight-
forward evaluation of the nonlinear term in (1.4) involves on the order of md

operations. In a forthcoming work [5], this computational cost is reduced by
the use of the fast Fourier transform.

• For the computations presented in this paper, we fixed M = m. This was
done for the sake of simplicity of presentation. Clearly, the success of valida-
tion strongly depends on upper bounds presented in Lemma 6.2. In general,
for fixed m choosing M > m increases the computational cost, but provides
a smaller bound for the truncation error εk. Improved bounds should facil-
itate validated continuation with a smaller projection dimension m, which
decreases the computational cost. The exact trade off is currently being ex-
plored.

• The computational strategy adopted for this work is to fix As and s through-
out the continuation procedure. In particular, in the Swift-Hohenberg exam-
ple we obtained 40 successful predictor-corrector steps with As = 0.002 and
s = 4 held constant over a parameter range of length 0.4. We were able to do
this because we chose a projection dimension m = 27 which is unnecessarily
large. For example, with m = 11, As = 0.002 and s = 4.52 we were able to
perform a validated continuation over a parameter range of length 0.01. In
this case, we obtained s = 4.52 by fixing As and seeking a successful s by
trial and error. This suggests that it is worthwhile to develop a method for
choosing As and s adaptively during the validated continuation procedure.

• As is pointed out in Section 5, the floating point errors are many orders of
magnitude smaller than the magnitude of the radii polynomials evaluated at
the validation radius. This suggests that it might be possible to compute
a priori bounds on the floating point errors from which one could conclude
that the validation computations are in fact rigorous computations. The
techniques in [7] might prove useful for this purpose.

Acknowledgments. The authors would like to thank L. Dieci for numerous
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more, and the referees for helpful comments on the layout of the paper.
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