Computational

Homology

Development status of CHomP and Conley-Morse-Database

Using CHomPand &,
conley-morse-database =~ “ e

Lorentz Center, Leiden University, August 2014

http:/ /chomp.rutgers.edu / Projects/Databases_for_the_Global Dynamics/software/

LorentzCenterAugust2014.pdf

http://chomp.rutgers.edu
http://chomp.rutgers.edu/Projects/Databases_for_the_Global_Dynamics/software/LorentzCenterAugust2014.pdf

CHomP and Conley-Morse-Database

Overview

* CHomP project provides tools for
computational homology and
computational dynamics.

« We'll discuss the status of the software
packages CHomP and Conley-Morse-
Database and give briet
demonstrations

Installation

Installing Conley-Morse-Database also installs CHomI

Conley-Morse-Database is a C++11 program and will require a C++11 compiler such as GCC >= 4.7 or Clang.
Note that Clang is standard on Mac OS X. To install on Mac OS X (or Linux with root privileges) we could
type into the shell:

mkdir ~/Work && cd ~/Work

git clone https://github.com/sharker8l/conley-morse-database
cd conley-morse-database

./install.sh

The prerequisites will install into " /usr/local." For Mac OS X, this will install the prerequisites using
Homebrew whenever possible. If brew is not installed, the installer will try to install it; this will require a
password.

To 1nstall on Linux without root privileges, you need to pick an installation directory you have write access to
and install there. For example:

mkdir ~/Work && cd ~/Work

git clone https://github.com/sharker8l/conley-morse-database
cd conley-morse-database

./install.sh ~/Work

T'wo versions:

Original CHomP: features better command line support
CHomP: features discrete Morse theory, used by Conley-Morse-Database

We talk about the second version.

Original CHomP:

®n0e Computational Homology Project ."
4,|» Q + 0 chomp.rutgers.edu Projects/Computational_Homology/OriginalCHomP/software/ ¢ L Reader m

Home Software Projects Education Links People

Software Introduction Download Compilation Data Formats

CHomP E=™

Note: This page describes the original version of the CHomP software, which shares part of the code with the RedHom project developed by the CAPD group. A totally new version of the CHomP software is cumrently
under development.

The CHomP software package consists of a C++ programming library, whose most fundamental features are also made available through a collection of command-line driven
programs (pre-compiled version available for some systems). The most basic program that provides access to several homology algorithms (implemented by W. Kalies, M.
Mrozek, and P. Pilarczyk) is called chomp. In addition to chomp, another main program is homcubes, which provides a flexible interface for the computation of homology of
cubical sets, as well as the computation of the homomorphisms induced in homology by combinatorial cubical multivalued maps. There are also algorithms and programs for
computing homology of simplicial polyhedra and chain complexes, as well as for manipulating cubical sets. The following pages describe the contents of the software package
in more detail:

C++ Library

Introduction - brief introduction to the basic CHomP software, which explains some of the most basic concepts and provides instructions on how to use the program chomp.
Download - a download page, both for the basic version, as well as the advanced one; contains the source code and precompiled programs
Compilation - compilation guidelines for various operating systems; some specific or more precise compilation instructions are also available:

o Get Started! - very concise yet detailed step-by-step compilation instructions for getting started with CHomP (a PDF file of a handout prepared for the ICMS 2010 in Kobe)
e For Ubuntu - step-by-step instructions for compiling the CHomP package in Ubuntu (also applies to most Debian-derived Linuxes)

Data formats - description of the text data formats in which cubical sets, maps, and other related data structures can be saved to and retrieved from files
Programs - a list of programs written in C++ that are compiled together with the CHomP library

Chooser - the CHomP Software Chooser, an interactive GUI Python script for composing the command line of most CHomP programs and with detailed information about the
pprograms

Examples - a list of examples contained in the examples/ subdirectory of the source code distribution; these examples illustrate how to use the programs and how to
nronare tho data thav alen indicate eamaoe dotailed aenacte of thoe enfhware

CHomP (at Rutgers

sharker81/CHomP

o GitHub, Inc. & github.com/ sharker&1/CHomP

This repository v Search or type a command

|| sharker81 / CHomP

CHomP -- Computation Homology Project software — Edit

) 20 commits

1 branch

P branch: master~ CHomP / +

passed compiler path flag 1o cmake
= sharker81 authored 2 days ago

B examples

M include

I source

I tests

& gitignore

@ AUTHORS

[© CMakelLists.txt
@ copynG

[® INSTALL

@ README

@ install.sh

initial commit

Stopped bundling Cimg.h

New cmake build system

Worked on tests

more gitiginore

initial commit

Fix to find non-standard libranes in install now
COPYING preferred to LICENSE

Stopped bundling Cimg.h

brought README up to date

passed compiler path flag to cmake

2 releases

@ Explore Gist Blog Help

2 contributors

latest commit fcbScb1427 [2
11 months ago
6 days ago

6 days ago

6 days ago

11 months ago
11 months ago
2 days ago

11 months ago
6 days ago

6 days ago

2 days ago

“~ Pulse

L« Graphs

HTTPS oo UHL

https://github.con E

You can clone with HTTPS, SSH,
or Subversion. @

(& Clone in Desktop

&> Download ZIP

< We']

CHomP Overview

* Computational Homology

“ We'll see a demonstration of command line programs

| discuss the low-level interface (which gives access

to a

| the features)

CHomP Cubical Complex

Cubical Complex File format: Top dimensional cell locations

athena [17:03:41] > more square.cub

Cubical Homology Command Line Program

athena [17:03:44] > chomp-cubical ./square.cub

Betti Numbers: 1 0 0

CHomP Simplicial Complex

Simplicial Complex file format: maximal simplices

athena [17:05:34] > more simplex.simp

Command-Line program for computing homology of
a simplicial complex.

athena [1

7:05:37] > chomp-simplicial simplex.simp
O 1

|
Betti Numbers: 2

CHomP Chain Complex

We can specify a chain complex via its boundary homomorphisms,

which in turn may be specified by the incidence numbers.
hena [17:06:38] > more circle.mat

athena [17:10:11] > chomp-matrix ./circle.mat
Betti Numbers: 1 1

low dimension 1
low dim index, high dim cell index, incidence number 0 @
low dim index, high dim cell index, incidence number
low dim index, high dim cell index, incidence number
i Il
0

repeat for each boundary matrix d: C1— C0

CHomP Relative Homology

For cubical complexes, the command line program allows relative homology.

Here is an example:

athena [17:20:02] > more squarewithhole.cub

athena [17:20:06] > chomp-cubical square.cub squarewithhole.cub
Betti Numbers: © 0 1

CHomP as a Software Library

* The command line programs are essentially toys; we
have emphasized lower-level code interfaces. CHomP
has far more features. (Nevertheless we should
probably provide more “toys.”)

“ As a software library, CHomP can do more: Induced
maps on homology, Conley Index, Graph complexes,
discrete Morse theory, novel Complex types, ...

CHomP Complexes

« Complexes derive from a base class that describes the
interface:

“ boundary, coboundary, size, dimension

+ d-Cells are indexed 0,1,2,...,side(d)-1

“ Cells type depends on type of complex.

* We provide: CubicalComplex, Simplicial Complex,
Morse Complex, Subcomplex, BitmapSubcomplex,
RelativeComplex, GraphComplex

CHomP Algebra

“ Algebra in CHomP is primarily matrix algebra.

* We provide a Sparse Matrix class that can give efficient row and
column operations (even if they are interspersed)

* The “Ring” class can be selected. (Potential problem: this is done at
compile-time.) We support finite fields Z_p and also polynomial
rings over fields.

* We provide Smith Normal Form and Frobenius Normal Form

* Discrete Morse theory also provides some algebraic shortcuts: for
example we can solve dx = ¢ where d is a boundary matrix using
ideas from discrete Morse theory.

CHomP Discrete Morse Theory

* CHomP computes homology using either Smith Normal
Form or discrete Morse theory (or both).

« Discrete Morse theory appears to very fast for many
practical problems.

* We compute Morse complex and we may compute chain
equivalences that let us move between the Morse
complex and the original complex. In particular this
allows us to “lift” homology generators in the Morse
complex up to the original complex.

Persistent Homology: Perscus

Here is another project using discrete Morse theory for homology.

®en0e6 Perseus: the Persistent Homology Software
(202 (O] [£]5 o sssupemean | 3 feacer IO
M B8 GitHub

VIDIT NANDA Home | Papers | Perseus | Teaching

Az

The Perseus Software Project for Rapid Computation of Persistent Homology

Download or Compile

Ciick on the icon for your operating system in order to download the suitable executable file. The current version is 4.0 Beta.

Microsoft Windows XP and above 4Bt €
Linux (Ubuntu, Mint, Debian, SUSE,...) saBt 4
Mac OS Tiger and up 64 Bit @

Once you have the file corresponding to your operating system, see "Basic Information and Usage" below. If you'd prefer to
compile the software from source yourself instead, keep reading.

The source code is also available as a zipped file here. Download this to a directory where you have read/write permissions.
You can now Use any C++ compiler to compile the main file Pers.cpp. The choice of compiler depends mainly on your
operating system. Microsoft Windows users have various compiler options such as the open-source mingw, or the complete
integrated development environment provided by the somewhat pricey Microsoft Visual Studio. Mac users will probably require
a hefty Xcode download and installation on their systems.

If using the gcc compiler from the command line, just go to the directory with the extracted source files and type:
g++ Pers.cpp -03 -0 perseus

Of course, you can replace "perseus” in the command above with any executable name of your choice.

Conley-Morse-Database

Conley-Morse-Database Overview

Computing Morse Decompositions for a dynamical system
Grids, Strong Components

Computing “Clutching” graphs for adjacent parameters
Tree-based Grid algorithms

Learning continuation theorems from the clutching data
Union-Find structures

Annotating continuation classes with Conley Index information
CHomP

Storing the results in a database structure
Handrolled database — switch to SQL?

Configuring Models

L)

» Conley-Morse-Database requires a “model” directory.

This model directory must contain two files:

modeldir/
config.xml
Model.h

There is an example”Model.h” file that works unless you are doing something
really fancy. In this case you provide “ModelMap.h” which is called by the
example “Model.h” file.

athena [18:02:05] > more config.xml

<config>
<model>

<name>Leslie Model, Depth 12</

<desc> This 1s a description.
</model>
<param>
<dim> 2 </
<bounds>
<lower>
<upper>
</bounds>
<subdiv>
<depth>
<S12€eS>
</subdiv>
</param>
<phase>
<dim> 2 </dim>
<bounds>
<lower> -1.0 -1.0 </lower>
<upper> 74.0 52.0 </upper>
</bounds>
<subdiv>
<init> 0 </
<min> 24 </n
<max> 30 </max>
<limit> 10000 </1imit>
</subdiv>
</phase>
</config>

/name>
</desc>

config.xml

The XML file gives
settings for parameter
space and phase space.
The settings for phase

space control some of the
algorithms.

We can provide a name and

description of the model in
these first fields.

Dimension and Bounding Boxes

a [18:02:05] > more config.xml

<config>

<model> .
<name>Leslie Model, Depth 12</name> We SpeC1fY U—pper
<desc> This 1s a description. </desc>

</model> and lower bounds

<param>
.

<dim> 2 </ for phase space and
<bounds>
<lower> 19.0 21.6 ; parameter space.
<upper> 20. : >
</bounds> The number of
<subdiv>

<depth> entries should

” S - .
<S1Z2€eS>

erbdiv match the “dim”

</param> .
<phase> setting.
<dim> </dim>
<bounds>
<lower> -1.0 -1.0 </lower>
<upper> 74.0 52.0 </upper>
</bounds>
<subdiv>
<init> 0 </init>
<min> 24 </min>
<max> 30 </max>
<limit> 10000 </1imit>
</subdiv>
</phase>
</config>

Param settings

a [18:02:05] > more config.xml

<config>
<model>
<name>Leslie Model, Depth 12</name>

<desc> This 1s a description. </desc>

</model>
<param>
<dim> 2
<bounds>
<lower>
<upper>
</bounds>
<subdiv>
<depth>
<S12€eS>
</subdiv>
</param>
<phase>
<dim> 2 </dim>
<bounds>
<lower> -1.0 -1.0 </lower>
<upper> 74.0 52.0 </upper>
</bounds>
<subdiv>
<init> 0 </init>
<min> 24 </min>
<max> 30 </max>
<limit> 10000 </1imit>
</subdiv>
</phase>
</config>

“Depth” means
number of
subdivisions — so

27depth boxes
across.

Sizes means
“number of
boxes across”
repeated for
each dimension

When conflicting, “sizes”
settings overrides “depth”
setting (which is the case

here)

init,min,max.limit)-scheme

a [18:02:05] > more config.xml

= Computation of Morse
<model>

<name>Leslie Model, Depth 12</name> Decompositions iS
<desc> This 1s a description. </desc>

</model>

<param>
<dim> 2 </

<bounds>
<lower>

<upper>

controlled by (init, min,
max, limit)-scheme
which is set here.

</bounds>
<subdiv>
<depth>
‘S1Zes”?
</subdiv>
</param>
<phase>
<dim> </dim>
<bounds>
<lower> -1.0 -1.0 </lower>
<upper> 74.0 52.0 </upper>
</bounds>
<subdiv>
<init> 0 </init>
<min> 24 </min>
<max> 30 </max>
<limit> 10000 </1imit>
</subdiv>
</phase>
</config>

Hierarchical Morse Decomposition Algorithm

« Given a grid we construct a directed graph for the
dynamics and compute the recurrent sets.

* We then subdivide those recurrent sets (given certain
criterion are met (see next slide)) and repeat.

(1n1t,min,max.limit)-scheme

init: unconditional number of subdivisions the phase
space grid undergoes to begin

+ min: the minimum resolution of a recurrent set.

* max: the maximum number of subdivisions a grid
element may be subdivided

+ limit: the size threshold at which we decide not to

further subdivide a recurrent set that has been
subdivided >= min times, but < max times

ModelMap.h file

You need to write the code for the dynamical system.

class ModeWMap : Map {

typedef simple_interval<double> interval;

wssenss Darameters
interval p@, pl;
void assign (RectGeo & rectangle) {
getRectangleComponent (rectangle, 0); asens® - CONStructor

getRectangleComponent (rectangle, 1);

RectGeo operator () (RectGeo & rectangle)

interval x@ = getRectangleComponent (rectangle, 0);

interval x1 = getRectangleComponent (rectangle, 1); dynamlcal map

interval y@ = (p@ * x0 + pl * x1) * exp (-0.1 * (x0 + x1)
interval yl = 0.7 * x0;

makeRectangle (y@, yl1);

CMDB SingleCMG

We compute the Leslie2D example at an exact parameter
value (20.0, 20.0) with (init, min, max, limit) = (0,24,30,10000)

The SingleCMG program can be compiled and run as follows:

ivial. x-1, Trivial
cd conley-morse-database @l i HD

make SingleCMG MODELDIR=./examples/Leslie2D l
cd ./examples/Leslie2D

./S8ingleCMG ./ 20 20 (rivial, x43-1, Trivia)_>

@ial,Trivial,D
Y

@-1 , Trivial, Tﬁ@

Monotonicity Problem for Reachability

* The partial order of the last example was not too great. It
contained “false positives.”

This has to do with limitations of the hierarchical scheme. We
cannot recompute at the end on all grid elements because of a
“monotonicity problem” — what if, as an artifact arising from
the numerics, the images of smaller rectangles are not strictly
contained in the images of larger rectangles? We haven’t yet
found a completely satisfactory solution to this.

* A brute force solution is to push the “init” setting way up (but
this is far more expensive!)

We compute the Leslie2D example at an exact parameter value

(20.0, 20.0) with (init, min, max, limit) = (24,24,30,10000)

@ial, Trivia],D @ial, XA3-1, Tﬁ@
@ x-1, Trivial) @1 ,Trivial, Tﬁ@

-~

compare to
previous result using

(0,24,30, 10000):

@ial, x-1, Tﬁ@
@ial, XA3-1, Tﬁ@

@ial, Trivial, x-1)
@x-l Trivial)
@- 1, Trivial, Tﬁ@

CMDB — the main program

cd conley-morse-database
./CMDB ./examples/Leslie2D

To run on a cluster:

CMDB calls “script.sh”. Edit this to choose number of cores or change
command line arguments.

cd conley-morse-database
. . make MODELDIR=./examples/Leslie2D
To run on a single machine: .4 /examples/Leslie2D
mpiexec -np 8 ./Conley Morse Database ./

Number of logical processor cores

Command line parameters are passed to Model.h. Currently the first one is
reserved to be the path at which config.xml is to be found.

CMDB — Program Design

The program operates in three phases which we call the
Morse Process, the Continuation Process, and the
Conley Process. The program can be compiled to only
perform some of these steps. This can be handy if
something gets interrupted and needs to be restarted,
but you don’t want to completely start over. It also can
come in handy if the Morse process isn’t finishing, since

we can actually continue on using the checkpoint files
that are created.

COMPUTE_MORSE_SETS := yes
COMPUTE_CONTINUATION := yes
COMPUTE_CONLEY INDEX := no

Morse Process

* The Morse Process computes the Morse decompositions
and the clutching relations between them for adjacent

parameters. The output of this phase is a file called
“database.raw”

—>

Model Morse Process e 4 database.raw

Contmnuation Process

* The Continuation Process takes “database.raw” as input and
produces a “database.mdb” file containing continuation
classes but getting rid of the clutching relations. (The
philosophy is that we care about the clutching relations only
insofar as we can produce continuation theorems from them.)

Continuation
» »
Process

database.mdb

Conley Process

* The Conley Process loads “database.mdb”, chooses a
representative from each “isolating neighborhood
continuation class,” computes Conley Index
information, and then annotates the set with it. The
output is stored as “database.cmdb”

database.mdb i
Conley Process

U e

= 4 database.cmdb

Overall:

Morse Process e d database.raw

(ontinuation
e 2 database.mdb
Process

e a4 database.cmdb

Conley Process

CMDB Zookeeper

Extra program: produces a “Zoo” of Conley-Morse-Graphs,
Hasse diagrams, Conley Indices in HTML format.

T o>

TS Gt o > [of

vial)
tal)
Al
ext2e)
Trivial) ﬂ’md.@
revisl)
+h)
M2y
L]
ial)
wal)

CMG w0
Qe %

\ [3
WA
VAVRYI

o>
e
G Gromn> | G
Cotnn

OMG s
L)

QOIS0

oo

v, Tri
(A6, Ten
(Troviad
vl x"6s
(Trivial >
LT
(Trevial, &
MG P
] Como> [
T2 Gt veis™ o
—'—'-‘
(A0e 1) @D A1 1 240 10wy
hnd.b
M2, T

CMDB Database-Explorer

Database-Explorer is a Mac OS X Application that loads “database.mdb”
or “database.cmdb” files through a dialogue window at startup.

ADASe-explorer

Continuation - . J Parameter
Graph ' & Space
Window - Window
’ cg:ymmoﬂmcaw
Dialog | mmmmc 891 g:)arSﬁ
| Window

2'2+2

Conlay Index of INCC 016
Dimansion O
Trivigd
Dimension 1
2xM 4 2

You can click on various entities which results in different
views being shown.

For example, clicking on an edge in the continuation graph results in the
display of two Morse graphs, and the continuation theorems that are
known between the combinatorial Morse sets. Notice that the numbering of
the combinatorial Morse sets reflects which continuation class it is in.

The clutching probably looked like this,
but this information is not available
except in “database.raw”.

CMDB Data Structures and Algorithms

* The processes are distributed on HPC clusters using the cluster-
delegator software package.

+ We provide Succinct Grids which have very low space use.
+ We also have a space efficient version of Tarjan’s algorithm.

+ Parameter space is dealt with very abstractly; in fact we can
generalize to parameter graphs where each vertex tells us how to
instantiate a dynamical system and an adjacency tells us that both
vertices provide outer approximations for some system.

+ We provide a Grid class that can handle Atlases. However, we have
not yet interfaced this new Grid class to CHomP.

Development Directions

Suggestion: Git Repositories

Git 1s nice since:

[t lets you use a forking workflow rather painlessly:

Iz

SRR

Fork another user’s project

Make a branch

Make changes, add files, etc...

Merge in changes from the main branch that occur (rebase)

Perform a pull request and the project owner performs a code review
and decides if he wants your changes.

Future directions for CHomP

« Support for Conley Index and induced homology of
maps independent of conley-morse-database

* No repetition of code between CHomP and conley-
morse-database for map evaluation

* Low-level interface for obtaining homology without
requiring generators.

* AtlasComplex for (stratified) manifolds

Future Directions tfor CMDB

Clutching when the phase space bounds vary

« Isolating neighborhood classes for intervals in Morse
graph, not just singletons.

“ Index Pairs for multi-scale grids.

“ Resolve “monotonicity problem”

“ Better support for ODE time-t maps.

Future Directions for CMDB, cont

“ SQL-style databases for querying and scaling

* BExternal memory computation of equivalence classes
« Portable database-explorer (web based?)

* Query Language

+ A richer “Zoo” web interface

