
Development status of CHomP and Conley-Morse-Database!

Using CHomP and
conley-morse-database

Shaun Harker!
Konstantin Mischaikow!
chomp.rutgers.edu!

Lorentz Center, Leiden University, August 2014

http://chomp.rutgers.edu/Projects/Databases_for_the_Global_Dynamics/software/
LorentzCenterAugust2014.pdf

http://chomp.rutgers.edu
http://chomp.rutgers.edu/Projects/Databases_for_the_Global_Dynamics/software/LorentzCenterAugust2014.pdf

CHomP and Conley-Morse-Database

Overview

• CHomP project provides tools for
computational homology and
computational dynamics.!

• We’ll discuss the status of the software
packages CHomP and Conley-Morse-
Database and give brief
demonstrations

Installation
Installing Conley-Morse-Database also installs CHomP

CHomP

Two versions:

Original CHomP: features better command line support!
CHomP: features discrete Morse theory, used by Conley-Morse-Database!

!
We talk about the second version.

Original CHomP:

CHomP (at Rutgers)

CHomP Overview

❖ Computational Homology!

❖ We’ll see a demonstration of command line programs!

❖ We’ll discuss the low-level interface (which gives access
to all the features)

CHomP Cubical Complex
Cubical Complex File format: Top dimensional cell locations

Cubical Homology Command Line Program

CHomP Simplicial Complex
Simplicial Complex file format: maximal simplices

Command-Line program for computing homology of
a simplicial complex.

CHomP Chain Complex
We can specify a chain complex via its boundary homomorphisms,

which in turn may be specified by the incidence numbers.

d: C1 C0

0

0 1

1

low dimension!
low dim index, high dim cell index, incidence number!
low dim index, high dim cell index, incidence number!
low dim index, high dim cell index, incidence number!
… !
!
repeat for each boundary matrix

CHomP Relative Homology
For cubical complexes, the command line program allows relative homology.

Here is an example:

CHomP as a Software Library

❖ The command line programs are essentially toys; we
have emphasized lower-level code interfaces. CHomP
has far more features. (Nevertheless we should
probably provide more “toys.”)!

❖ As a software library, CHomP can do more: Induced
maps on homology, Conley Index, Graph complexes,
discrete Morse theory, novel Complex types, …

CHomP Complexes
❖ Complexes derive from a base class that describes the

interface:!

❖ boundary, coboundary, size, dimension!

❖ d-Cells are indexed 0,1,2,…,side(d)-1!

❖ Cells type depends on type of complex.!

❖ We provide: CubicalComplex, SimplicialComplex,
Morse Complex, Subcomplex, BitmapSubcomplex,
RelativeComplex, GraphComplex

CHomP Algebra
❖ Algebra in CHomP is primarily matrix algebra. !

❖ We provide a Sparse Matrix class that can give efficient row and
column operations (even if they are interspersed)!

❖ The “Ring” class can be selected. (Potential problem: this is done at
compile-time.) We support finite fields Z_p and also polynomial
rings over fields.!

❖ We provide Smith Normal Form and Frobenius Normal Form!

❖ Discrete Morse theory also provides some algebraic shortcuts: for
example we can solve dx = c where d is a boundary matrix using
ideas from discrete Morse theory.

CHomP Discrete Morse Theory
❖ CHomP computes homology using either Smith Normal

Form or discrete Morse theory (or both).!

❖ Discrete Morse theory appears to very fast for many
practical problems.!

❖ We compute Morse complex and we may compute chain
equivalences that let us move between the Morse
complex and the original complex. In particular this
allows us to “lift” homology generators in the Morse
complex up to the original complex.

Persistent Homology: Perseus
Here is another project using discrete Morse theory for homology.

Conley-Morse-Database

Conley-Morse-Database Overview
❖ Computing Morse Decompositions for a dynamical system

Grids, Strong Components!

❖ Computing “Clutching” graphs for adjacent parameters
Tree-based Grid algorithms!

❖ Learning continuation theorems from the clutching data
Union-Find structures!

❖ Annotating continuation classes with Conley Index information
CHomP!

❖ Storing the results in a database structure
Handrolled database — switch to SQL?

Configuring Models

❖ Conley-Morse-Database requires a “model” directory.!

❖ This model directory must contain two files:
modeldir/!
 config.xml!
 Model.h

There is an example“Model.h” file that works unless you are doing something
really fancy. In this case you provide “ModelMap.h” which is called by the

example “Model.h” file.

config.xml
The XML file gives

settings for parameter
space and phase space.
The settings for phase

space control some of the
algorithms.!

!

We can provide a name and
description of the model in

these first fields.

Dimension and Bounding Boxes

We specify upper
and lower bounds

for phase space and
parameter space.
The number of
entries should

match the “dim”
setting.!

Param settings

When conflicting, “sizes”
settings overrides “depth”
setting (which is the case

here)!

“Depth” means
number of

subdivisions — so
2^depth boxes

across.!

Sizes means
“number of

boxes across”
repeated for

each dimension

(init,min,max,limit)-scheme
Computation of Morse

Decompositions is
controlled by (init, min,

max, limit)-scheme
which is set here.

Hierarchical Morse Decomposition Algorithm

❖ Given a grid we construct a directed graph for the
dynamics and compute the recurrent sets.!

❖ We then subdivide those recurrent sets (given certain
criterion are met (see next slide)) and repeat.

(init,min,max,limit)-scheme
❖ init: unconditional number of subdivisions the phase

space grid undergoes to begin!

❖ min: the minimum resolution of a recurrent set.!

❖ max: the maximum number of subdivisions a grid
element may be subdivided!

❖ limit: the size threshold at which we decide not to
further subdivide a recurrent set that has been
subdivided >= min times, but < max times

ModelMap.h file
❖ You need to write the code for the dynamical system.

constructor

parameters

dynamical map

CMDB SingleCMG
We compute the Leslie2D example at an exact parameter
value (20.0, 20.0) with (init, min, max, limit) = (0,24,30,10000)

Monotonicity Problem for Reachability
❖ The partial order of the last example was not too great. It

contained “false positives.” !

❖ This has to do with limitations of the hierarchical scheme. We
cannot recompute at the end on all grid elements because of a
“monotonicity problem” — what if, as an artifact arising from
the numerics, the images of smaller rectangles are not strictly
contained in the images of larger rectangles? We haven’t yet
found a completely satisfactory solution to this.!

❖ A brute force solution is to push the “init” setting way up (but
this is far more expensive!)

We compute the Leslie2D example at an exact parameter value
(20.0, 20.0) with (init, min, max, limit) = (24,24,30,10000)

compare to!
previous result using!

 (0,24,30, 10000):

CMDB — the main program

To run on a cluster:

To run on a single machine:

Number of logical processor cores

CMDB calls “script.sh”. Edit this to choose number of cores or change
command line arguments.

Command line parameters are passed to Model.h. Currently the first one is
reserved to be the path at which config.xml is to be found.

CMDB — Program Design

❖ The program operates in three phases which we call the
Morse Process, the Continuation Process, and the
Conley Process. The program can be compiled to only
perform some of these steps. This can be handy if
something gets interrupted and needs to be restarted,
but you don’t want to completely start over. It also can
come in handy if the Morse process isn’t finishing, since
we can actually continue on using the checkpoint files
that are created.

Morse Process
❖ The Morse Process computes the Morse decompositions

and the clutching relations between them for adjacent
parameters. The output of this phase is a file called
“database.raw”

Model Morse Process database.raw

Continuation Process
❖ The Continuation Process takes “database.raw” as input and

produces a “database.mdb” file containing continuation
classes but getting rid of the clutching relations. (The
philosophy is that we care about the clutching relations only
insofar as we can produce continuation theorems from them.)

Continuation
Processdatabase.raw database.mdb

Conley Process
❖ The Conley Process loads “database.mdb”, chooses a

representative from each “isolating neighborhood
continuation class,” computes Conley Index
information, and then annotates the set with it. The
output is stored as “database.cmdb”

Conley Process
database.mdb

database.cmdb

Model

Overall:

Model

Morse Process database.raw

Continuation
Process database.mdb

Conley Process database.cmdb

CMDB Zookeeper
Extra program: produces a “Zoo” of Conley-Morse-Graphs,

Hasse diagrams, Conley Indices in HTML format.

CMDB Database-Explorer
Database-Explorer is a Mac OS X Application that loads “database.mdb”

or “database.cmdb” files through a dialogue window at startup.

You can click on various entities which results in different
views being shown.

For example, clicking on an edge in the continuation graph results in the
display of two Morse graphs, and the continuation theorems that are

known between the combinatorial Morse sets. Notice that the numbering of
the combinatorial Morse sets reflects which continuation class it is in.

The clutching probably looked like this,
but this information is not available

except in “database.raw”.

CMDB Data Structures and Algorithms

❖ The processes are distributed on HPC clusters using the cluster-
delegator software package.!

❖ We provide Succinct Grids which have very low space use.!

❖ We also have a space efficient version of Tarjan’s algorithm.!

❖ Parameter space is dealt with very abstractly; in fact we can
generalize to parameter graphs where each vertex tells us how to
instantiate a dynamical system and an adjacency tells us that both
vertices provide outer approximations for some system.!

❖ We provide a Grid class that can handle Atlases. However, we have
not yet interfaced this new Grid class to CHomP.

Development Directions

Suggestion: Git Repositories
Git is nice since:!

It lets you use a forking workflow rather painlessly:!

1. Fork another user’s project !

2. Make a branch!

3. Make changes, add files, etc…!

4. Merge in changes from the main branch that occur (rebase)!

5. Perform a pull request and the project owner performs a code review
and decides if he wants your changes.!

Future directions for CHomP

❖ Support for Conley Index and induced homology of
maps independent of conley-morse-database!

❖ No repetition of code between CHomP and conley-
morse-database for map evaluation!

❖ Low-level interface for obtaining homology without
requiring generators.!

❖ AtlasComplex for (stratified) manifolds

Future Directions for CMDB

❖ Clutching when the phase space bounds vary!

❖ Isolating neighborhood classes for intervals in Morse
graph, not just singletons.!

❖ Index Pairs for multi-scale grids.!

❖ Resolve “monotonicity problem”!

❖ Better support for ODE time-t maps.

Future Directions for CMDB, cont

❖ SQL-style databases for querying and scaling!

❖ External memory computation of equivalence classes!

❖ Portable database-explorer (web based?)!

❖ Query Language!

❖ A richer “Zoo” web interface

Thanks

