Databases: Newton's Method








Newton's Method in ℝ²

For a function with a zero at the origin, the question of along which direction Newton's method converges to 0 is a question about the dynamics of a map on the circle, S¹.

If we restrict our attention to generic functions with Jacobians that do not vanish at the origin and with nondegenerate nonlinearities, we can parameterize such functions with the four-dimensional parameter space:



The dynamics of the map with these parameters is then given by the following:




Parameter
Space
Parameter
Space
Depth
Phase
Space
Phase
Space
Min
Depth
Phase
Space
Max
Depth
Phase
Space
Initial
Size
Limit
Data
6 12 17 11 100 Newton4D
Zoo
7 7 12 6 100 Newton3D-1
Zoo
7 7 12 6 100 Newton3D-2
Zoo
7 7 12 6 100 Newton3D-3
Zoo
7 7 12 6 100 Newton3D-4
Zoo
7 7 12 6 100 Newton3D-5
Zoo
10 12 17 11 100 Newton2D-1
Zoo
10 12 17 11 100 Newton2D-2
Zoo
10 12 17 11 100 Newton2D-3
Zoo
10 12 17 11 100 Newton2D-4
Zoo
10 12 17 11 100 Newton2D-5
Zoo
10 12 17 11 100 Newton2D-6
Zoo
11 14 19 13 100 Newton2D-7
Zoo
11 14 19 13 100 Newton2D-8
Zoo
11 14 19 13 100 Newton2D-9
Zoo
11 14 19 13 100 Newton2D-10
Zoo
11 14 19 13 100 Newton2D-11
Zoo
11 14 19 13 100 Newton2D-12
Zoo
10 12 17 11 100 newton-2-10-12
8 12 17 NA 100 newton-2-8-12